269 research outputs found

    Single GPS Antenna Attitude Vector Pair - NEOSSat Recovery

    Get PDF
    In flight, the Near Earth Object Surveillance Satellite (NEOSSat) lost use of its single-string magnetometer that was necessary to coarsely solve the attitude problem and seed the satellite\u27s star tracker for fine attitude determination. Unable to determine attitude, satellite control was lost and an ad-hoc, in-flight, solution was needed to recover operations. Building on existing GPS literature, NEOSSat\u27s GPS receiver was augmented, in software, to estimate the antenna\u27s look direction, in an inertial frame of reference. Matched with the known (mounting) vector in the body frame, a vector pair was successfully created that replaced the one from the magnetometer. This paper describes the mission context, algorithms, calibration methods, software implementation, testing (ground and flight) and optimizations that enabled the on-orbit GPS receiver to become a successful attitude sensor. The results, RMS errors within 10 degrees without mitigation of multipath effects, are generally applicable to satellites that have even just one GPS receiver and antenna and represent an alternate or back-up means of contributing to coarse attitude determination

    Copernicus Cal/Val Solution - D3.1 Recommendations for R&D activities on Instrumentation Technologies

    Get PDF
    The Document identifies the gaps in instrumentation technologies for pre-flight characterisation, onboard calibration and Fiducial Reference Measurements (FRM) used for calibration and validation (Cal/Val) activities for the current Copernicus missions. It also addresses the measurement needs for future Copernicus missions and gives a prioritised list of recommendations for R&D activities on instrumentation technologies. Four types of missions are covered based on the division used in the rest of the CCVS project: optical, altimetry, radar and microwave and atmospheric composition. It also gives an overview of some promising instrumentation technologies in each measurement field for FRM that could fill the gaps for requirements not yet met for the current and future Copernicus missions and identifies the research and development (R&D) activities needed to mature these example technologies. The Document does not provide an exhaustive list of all the new technologies being developed but will give a few examples for each field to show what efforts are being made to fill the gaps. None of the examples is promoted as the best possible solutions. The selection is based on the authors' knowledge during the preparation of the Document. The information included is mainly collected from the deliverables of work packages 1 and 2 in the CCVS project. The new technologies are primarily from the interviews with various measurement networks and campaigns carried out in tasks 2.4 and 2.5. Reference documents can be found in section 1.3

    Development, Experimental Validation, and Progressive Failure Modeling of an Ultra-Thin High Stiffness Deployable Composite Boom for in-Space Applications

    Get PDF
    To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This research focuses on fabrication, experimental testing, and progressive failure modelling to study the deformation of an ultra-thin composite beam. The research study examines deformation modes of a boom under repetitive pure bending loads using 4-point bending setup. The material and fabrication challenges for Ultra-thin, High Stiffness (UTHS) Composite Boom are discussed in detail. Continuum Damage Mechanics (CDM) model for the beam is calibrated using experimental data and used for a finite element explicit analysis of the boom. It is shown that UTHS can sustain high bending radius of 14 mm without significant fiber and matrix damage. The results of the simulation were found to closely match the experimental results, indicating that the simulation accurately predicts damage in the material. The findings of this research provide a better understanding of the deformation characteristics of the boom and can be used for designing UTHS deployable structures

    The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982

    Get PDF
    The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them

    LDEF: A bibliography with abstracts

    Get PDF
    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication

    Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    Get PDF
    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas

    The Aerosol Limb Imager

    Get PDF
    Stratospheric aerosol has been measured globally from satellite platforms over the past three decades. The variability of the natural and anthropogenic sources and resulting effect on climate make continued and improved measurements a priority. Yet, few satellite instruments capable of measuring stratospheric aerosol currently exist, with a lack of planned missions to fill the gap left by the ultimate loss of current instruments. The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype. The instrument design uses a large aperture Acousto-Optic Tunable Filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. Through the nature of the AOTF operation, ALI measures one orientation of the polarized limb radiance, rather than the historically observed total radiance. A modelling study on the impact of this approach on the retrievals shows that while there is no distinct advantage to the linearly polarized measurement, there are also no clear disadvantages assuming the somewhat lower overall signal levels can be handled in the instrument design or operation. The long term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track dimensions. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicate that the radiance measurements are of high quality, and these are used to successfully retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650–950 nm, along with one moment of the particle size distribution

    Tethers in Space Handbook

    Get PDF
    A new edition of the Tethers in Space Handbook was needed after the last edition published in 1989. Tether-related activities have been quite busy in the 90's. We have had the flights of TSSI and TSSI-R, SEDS-1 and -2, PMG, TIPS and OEDIPUS. In less than three years there have been one international Conference on Tethers in Space, held in Washington DC, and three workshops, held at ESA/Estec in the Netherlands, at ISAS in Japan and at the University of Michigan, Ann Harbor. The community has grown and we finally have real flight data to compare our models with. The life of spaceborne tethers has not been always easy and we got our dose of setbacks, but we feel pretty optimistic for the future. We are just stepping out of the pioneering stage to start to use tethers for space science and technological applications. As we are writing this handbook TiPs, a NRL tether project is flying above our heads. There is no emphasis in affirming that as of today spacebome tethers are a reality and their potential is far from being fully appreciated. Consequently, a large amount of new information had to be incorporated into this new edition. The general structure of the handbook has been left mostly unchanged. The past editors have set a style which we have not felt needed change. The section on the flights has been enriched with information on the scientific results. The categories of the applications have not been modified, and in some cases we have mentioned the existence of related flight data. We felt that the section contributed by Joe Carroll, called Tether Data, should be maintained as it was, being a "classic" and still very accurate and not at all obsolete. We have introduced a new chapter entitled Space Science and Tethers since flight experience has shown that tethers can complement other space-based investigations. The bibliography has been updated. Due to the great production in the last few years %e had to restrict our search to works published in refereed journal. The production, however, is much more extensive. In addition, we have included the summary of the papers presented at the last International Conference which was a forum for first-hand information on all the flights

    Tomography of the ionosphere

    Get PDF

    Visualization Techniques in Space and Atmospheric Sciences

    Get PDF
    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility
    • …
    corecore