169 research outputs found

    Novel integrative options for passive filter inductor in high speed AC drives

    Get PDF
    This paper presents novel integration options for passive inductor which include: motor-shaped rotational and motor-shaped rotor-less inductor for high speed motor drive system. The novel options have been designed and their performance is compared with the conventional EE core inductor using finite element analysis. It is observed that there is a significant reduction in total losses at fundamental frequency along with substantial reduction in the AC copper loss at 10, 15 and 20 kHz switching frequencies, when the proposed integrated options are utilized. For the motor-shaped rotational inductor, the total losses at fundamental frequency and AC copper loss at different switching frequencies are reduced by 26.1% and 73.8% (at different switching frequencies) respectively. There is a reduction in overall volume by 3.6%, but this comes with 11.7% increase in weight. For the motor-shaped rotor-less inductor, the total losses at fundamental frequency and AC copper loss at different switching frequencies are reduced by 10.4% and 73.8% (at different switching frequencies) respectively. There is a reduction in overall volume by 3.6% but this comes with 6.1% increase in weight. The proposed designs can share the cooling system of the motor thus, eliminating the requirement of separate cooling system

    Novel integrative options for passive filter inductor in high speed AC drives

    Full text link

    Design optimization of integrated rotor-less inductors for high-speed AC drive applications

    Get PDF
    Discrete sub-system due to passive elements in motor drive require functional and structural integration to make efficient and power dense overall system. Such power dense system is the prerequisite in aerospace and marine applications. This paper presents the design optimization of integrated rotor-less inductors for high speed AC drive applications. Different slot-pole combinations are considered in this process. The single layer (SL) and double layer (DL) windings are chosen with concentrated winding (CW) and distributed winding (DW) configurations. The rotor-less inductors are optimized and compared in this paper with EE core inductor in terms of total losses, weight and AC copper resistance at both fundamental frequency and switching frequencies (10, 15 and 20 kHz). The comparative analysis between EE core and rotor-less inductors has shown a significant reduction in total losses and AC copper resistance at both fundamental frequency and all switching frequencies

    Review on the Traditional and Integrated Passives: State-of-the-Art Design and Technologies

    Get PDF
    With the increased necessity of a high power density and efficient system in aerospace and marine industries, integrated motor drives provide an excellent solution in the modern era. Therefore, a close structural and functional integration of passive components has become a prerequisite task to make a compact overall system. This article reviews the existing motor drives system with integrated passive technologies. To start, the design aspect of the traditional and integrated filter inductors, using the area product approach, is discussed. Subsequently, layouts of traditional and integrated inductors are presented. The available capacitor technologies, suitable for integration, are also discussed with pros and cons of each capacitor type

    Novel Permanent Magnet Synchronous Motor with Integrated Filter Inductor Using Motor's Inherent Magnetics

    Get PDF
    A close functional and structural integration of passive elements is required to improve the power density of motor drives. Such power dense motor drives are prerequisite in aerospace and automotive applications. This paper presents a permanent magnet motor with integrated filter inductor, which not only eliminates inductor losses but also removes its associated weight and volume. The motor with integrated filter uses motor's inherent magnetics in order to use it as a filter inductance instead of adopting an external inductor option, which is traditionally placed outside the motor. A vector-controlled model, taking modulation and switching effect into account, has been developed by using MATLAB/Simulink tool. To experimentally validate the concept of the motor with integrated filter inductor, the winding connections of an existing motor are modified. The comparative analysis, between the traditional and integrated motor drive systems, is carried out in terms of magnitude of switching component, total system losses, weight and volume. The total losses in the motor with integrated filter are reduced by 34.2% at 2100rpm and 3Nm load, when compared to the motor with traditional filter inductor, whereas, its weight and volume in the motor with integrated filter inductor is eliminated completely

    The integration of input filters in electrical drives

    Get PDF
    PhD ThesisThe integration of passive components such as inductors and capacitors has gained significant popularity in integrated drive research, and future power electronics systems will require more integrated and standardised packages. These give rise to better power density and improved performance. However, packaging techniques and passive components have been considered a technological barrier which is limiting advances in power electronics. The focus on size reduction should be turned towards the passive components, such as converter chokes, DC-link capacitors and electromagnetic interference (EMI) filters, and achieving greater power density depends on innovative integration concepts, flexibility in structures and extended operating temperature ranges while system integration and modularity are not mutually exclusive. This research considers the possibility of integrating input power filter components into electric machines. Particular attention is paid to the integration of electromagnetic line filter inductors to give better utilisation of the motor volume and envelope. This can be achieved by sharing the machine’s magnetic circuit. An LCL line filter has been chosen to be integrated with a gridconnected permanent magnet synchronous machine. Machines have been proposed in this study for low speed (3000 RPM) and high speed (25000 RPM) operation. The two machines have similar dimensions, but the low-speed machine is less challenging in terms of losses and filter integration, so attention is directed more to the high-speed machine. Both are supplied with low- and high-power drives at power ratings of 4.5 kW and 38 kW respectively. Several novel techniques have been investigated to integrate filter inductors into the electrical machines to produce a single mechanically packaged unit without significant increases in size and losses. Different approaches have been simulated using finite element analysis (FEA) to assess the effectiveness of the integration of passives within the machine structure. Each design has been iteratively optimised to determine the best mass of copper and core for the integrated filter inductors, targeting parity in power density when compared to traditional separate packages. The research demonstrates that an approach utilising a double-slot stator machine (named the integrated double slot (IDS) machine) with input filters wound into the outermost slots is the most appropriate choice in terms of achieving higher power density. The integrated filter inductors mimic the electromagnetic behaviour of the discrete industrially packaged inductors but with a volume reduction of 87.6%. A prototype of the IDS machine design of a 38 kW, 25000 RPM, including filter inductors was manufactured and testedthe General Electricity Company of Libya (GECOL), the Engineering and Physical Sciences Research Council (EPSRC), and the Engineering Doctorate scheme at Newcastle University

    Integrated Motor Drive: Mass and Volume Optimization of the Motor with an Integrated Filter Inductor

    Get PDF
    The present trend of aerospace industries is being shifted towards a “More Electric Aircraft” system which needs to be high power dense. For this purpose, the integration technologies have gained massive interest, providing the benefits of reduced losses, weight, volume and cost. In this article, the integration concept of a passive filter inductor is presented for a permanent magnet synchronous motor. The integrated motor eliminates the need of an external inductor, thus, eliminates the added inductor losses, mass, volume and cost associated with it. The motor utilizes its’s inherent inductance to use it as a filter inductor instead of implementing a discrete inductor that is commonly placed between inverter and the motor terminals. Optimization study is carried out, where the filter branch windings are tapped, in terms of improving mass and volume and performance parameters such as power losses and torque ripple. From the optimization study, the motor with minimum weight and volume is experimentally validated at the rated conditions, in order to prove the concept feasibility. Total system weight and volume of integrated and traditional motor drives are compared, which gives the minimum weight of 2.26 kg and 3.14 kg respectively, and the minimum volume of 0.54 L and 1.1 L respectively

    Applications of Power Electronics:Volume 1

    Get PDF

    Simulation, Measurement, and Emulation of Photovoltaic Modules Using High Frequency and High Power Density Power Electronic Circuits

    Get PDF
    The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition. The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV modules using a current-voltage (I-V) curve tracer allows the installer to know whether the PV modules are 100% operational. The installed modules can be properly matched to maximize performance. Once installed, the whole system needs to be characterized similarly to detect mismatches, partial shading, or installation damage before energizing the system. This will prevent any reliability issues from the onset and ensure the system efficiency will remain high. A capacitive load is implemented in making I-V curve measurements with the goal of minimizing the curve tracer volume and cost. Additionally, the increase of measurement resolution and accuracy is possible via the use of accurate voltage and current measurement methods and accurate PV models to translate the curves to standard testing conditions. A move from mechanical relays to solid-state MOSFETs improved system reliability while significantly reducing device volume and costs. Finally, emulating PV modules is necessary for testing electrical components of a PV system. PV emulation simplifies and standardizes the tests allowing for different irradiance, temperature and partial shading levels to be easily tested. Proper emulation of PV modules requires an accurate and mathematically simple PV model that incorporates all known system variables so that any PV module can be emulated as the design requires. A non-synchronous buck converter is proposed for the emulation of a single, high-power PV module using traditional silicon devices. With the proof-of-concept working and improvements in efficiency, power density and steady-state errors made, dynamic tests were performed using an inverter connected to the PV emulator. In order to improve the dynamic characteristics, a synchronous buck converter topology is proposed along with the use of advanced GaNFET devices which resulted in very high power efficiency and improved dynamic response characteristics when emulating PV modules
    • …
    corecore