1,594 research outputs found

    Final Research Report on Auto-Tagging of Music

    Get PDF
    The deliverable D4.7 concerns the work achieved by IRCAM until M36 for the “auto-tagging of music”. The deliverable is a research report. The software libraries resulting from the research have been integrated into Fincons/HearDis! Music Library Manager or are used by TU Berlin. The final software libraries are described in D4.5. The research work on auto-tagging has concentrated on four aspects: 1) Further improving IRCAM’s machine-learning system ircamclass. This has been done by developing the new MASSS audio features, including audio augmentation and audio segmentation into ircamclass. The system has then been applied to train HearDis! “soft” features (Vocals-1, Vocals-2, Pop-Appeal, Intensity, Instrumentation, Timbre, Genre, Style). This is described in Part 3. 2) Developing two sets of “hard” features (i.e. related to musical or musicological concepts) as specified by HearDis! (for integration into Fincons/HearDis! Music Library Manager) and TU Berlin (as input for the prediction model of the GMBI attributes). Such features are either derived from previously estimated higher-level concepts (such as structure, key or succession of chords) or by developing new signal processing algorithm (such as HPSS) or main melody estimation. This is described in Part 4. 3) Developing audio features to characterize the audio quality of a music track. The goal is to describe the quality of the audio independently of its apparent encoding. This is then used to estimate audio degradation or music decade. This is to be used to ensure that playlists contain tracks with similar audio quality. This is described in Part 5. 4) Developing innovative algorithms to extract specific audio features to improve music mixes. So far, innovative techniques (based on various Blind Audio Source Separation algorithms and Convolutional Neural Network) have been developed for singing voice separation, singing voice segmentation, music structure boundaries estimation, and DJ cue-region estimation. This is described in Part 6.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Audio Content-Based Music Retrieval

    Get PDF
    The rapidly growing corpus of digital audio material requires novel retrieval strategies for exploring large music collections. Traditional retrieval strategies rely on metadata that describe the actual audio content in words. In the case that such textual descriptions are not available, one requires content-based retrieval strategies which only utilize the raw audio material. In this contribution, we discuss content-based retrieval strategies that follow the query-by-example paradigm: given an audio query, the task is to retrieve all documents that are somehow similar or related to the query from a music collection. Such strategies can be loosely classified according to their "specificity", which refers to the degree of similarity between the query and the database documents. Here, high specificity refers to a strict notion of similarity, whereas low specificity to a rather vague one. Furthermore, we introduce a second classification principle based on "granularity", where one distinguishes between fragment-level and document-level retrieval. Using a classification scheme based on specificity and granularity, we identify various classes of retrieval scenarios, which comprise "audio identification", "audio matching", and "version identification". For these three important classes, we give an overview of representative state-of-the-art approaches, which also illustrate the sometimes subtle but crucial differences between the retrieval scenarios. Finally, we give an outlook on a user-oriented retrieval system, which combines the various retrieval strategies in a unified framework

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field
    • …
    corecore