121 research outputs found

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Get PDF
    abstract: The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. The qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.View the article as published at https://www.frontiersin.org/articles/10.3389/frobt.2017.00069/ful

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    Design and Implementation of an Interactive Surface System with Controllable Shape and Softness

    Get PDF
    「平面的で硬い」という従来のディスプレイの物理的制約は、ユーザが3次元的な形状を有するデータを扱う場合や触覚的な情報を有するデータと対話する場合に様々な制限を与えている. また, 平面的なディスプレイ上で複雑な立体形状を閲覧・モデリングするためには, 頻繁な視点移動や複雑な頂点操作等を伴うGUI操作が必要である. このような問題を解決するため, 砂, 粘土のような非平面的・柔軟な素材をサーフェスに取り入れて, 従来のディスプレイにできない異なるインタラクションを可能にした研究が行われていたが, 一つのデバイスで異なる物理性質を表現できるディスプレイはあまり研究されていない.本研究は細かなパーティクルと気圧操作による硬さ制御技術に着目し, 硬度可変ディスプレイの実装を行った. 硬さ制御によって, 軟らかいときに形状の変形や, 用途に応じて形状を維持することもできる.このディスプレイの可能性を探るため, 硬さ制御を利用したモデリングアプリケーションを開発した. このアプリケーションでは, モデリング操作に応じて, 適切な硬さを選択する事ができ, モデルが完成した時にディスプレイを硬化し形状を維持させることが可能である.また, 深度カメラを用いることで, タッチ入力による彩色が可能になり, 作成したモデルをスキャンし, CADデータとして保存することもできる. さらに, 3Dプリンターで出力することも可能にした.このシステムは、従来のモデリング操作をより直感的する事ができるが, システム単独で形状を生成することができない. そこで, 本研究では粒子運搬技術を用いて, ディスプレイの形状アクチュエーション手法も提案する. この手法では, モデルの大まかな形状を生成することで, ユーザは形状の細部を自由にカスタマイズすることができる. この手法は, 硬さ制御技術と同じくパーティクルと空気アクチュエーションを用いているため, 低コストかつシンプルなシステムで実現することができる.電気通信大学201

    Design, characterisation and validation of a haptic interface based on twisted string actuation.

    Get PDF
    This paper presents the design and experimental characterisation of a wrist haptic interface based on a twisted string actuator. The interface is designed for controlled actuation of wrist flexion/extension and is capable of rendering torque feedback through a rotary handle driven by the twisted string actuator and spring-loaded cable mechanisms. The interface was characterised to obtain its static and dynamic haptic feedback rendering capabilities. Compliance in the spring and actuation mechanism makes the interface suitable for smooth rendering of haptic feedback of large magnitudes due to the high motion transmission ratio of the twisted strings. Haptic virtual wall rendering capabilities are demonstrated

    Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research

    Get PDF
    Shape-changing interfaces are physically tangible, interactive devices, surfaces, or spaces that allow for rich, organic, and novel experiences with computational devices. Over the last 15 years, research has produced functional prototypes over many use applications; reviews have identified themes and possible future directions but have not yet looked at possible design or application-based research. Here, we gather this information together to provide a reference for designers and researchers wishing to build upon existing prototyping work, using synthesis and discussion of existing shape-changing interface reviews and comprehensive analysis and classification of 84 shape-changing interfaces. Eight categories of prototype are identified alongside recommendations for the field

    Actuation and stiffening in fluid-driven soft robots using low-melting-point material

    Get PDF
    Soft material robots offer a number of advantages over traditional rigid robots in applications including human-robot interaction, rehabilitation and surgery. These robots can navigate around obstacles, elongate, squeeze through narrow openings or be squeezed - and they are considered to be inherently safe. The ability to stiffen compliant soft actuators has been achieved by embedding various mechanisms that are generally decoupled from the actuation principle. Miniaturisation becomes challenging due to space limitations which can in turn result in diminution of stiffening effects. Here, we propose to hydraulically actuate soft manipulators with low-melting-point material and, at the same time, be able to switch between a soft and stiff state. Instead of allocating an additional stiffening chamber within the soft robot, one chamber only is used for actuation and stiffening. Low Melting Point Alloy is integrated into the actuation chamber of a single-compartment soft robotic manipulator and the interfaced robotic syringe pump. Temperature change is enabled through embedded nichrome wires. Our experimental results show higher stiffness factors, from 9-12 opposing the motion of curvature, than those previously found for jamming mechanisms incorporated in separate additional chambers, in the range of 2-8 for the same motion
    corecore