14 research outputs found

    DESIGNING OPTIMAL FUZZY CONTROLLER FOR MRD-BASED TRAIN-CAR SUSPENSION SYSTEMS

    Get PDF
    Random time-varying chassis mass, which consists of passenger and cargo mass as well as the normalized wind force, causes reducing the effectiveness of smart vehicle suspensions. In order to deal with this, we develop a novel fuzzy-based dynamic inversion controller (FDIC) for the control of a train-car suspension system using a magneto-rheological damper (MRD) or MRDs. The FDIC is constituted of three main parts: i) an inverse MRD model (ANFIS-I-MRD) via a measured data set and an adaptive neuro-fuzzy inference system (ANFIS), ii) a fuzzy-based sliding mode controller (FSMC) and iii) a disturbance and uncertainty observer (DUO). The FSMC is designed via the two following steps. The first one is to establish and optimize parameters of a sliding mode controller (SMC). The next is to design a fuzzy logic system to expand the ability of the SMC to face with the larger ranges of the load variation. The DUO is used to compensate for disturbance and uncertainty. By using the ANFIS-I-MRD and the control force estimated by the FDIC, current for the MRD at each time for stamping out chassis vibration is specified. The stability of the FDIC is analyzed via Lyapunov stability theory. Surveys shown that the FDIC could provide the improved control competence to reduce unwanted vibrations in an enlarged range of the varying chassis load

    Structural Control Strategies for Earthquake Response Reduction of Buildings

    Get PDF
    Destructive seismic events continue to demonstrate the importance of mitigating these hazards to building structures. To protect buildings from such extreme dynamic events, structural control has been considered one of the most effective strategies. Structural control strategies can be divided into four classes: passive, active, semi-active, and hybrid control. Because passive control systems are well understood and require no external power source, they have been accepted widely by the engineering community. However, these passive systems have the limitation of not being able to adapt to varying conditions. While active systems are able to do that, they require a significant amount of power to generate large control forces. Moreover, the stability of active systems is not ensured. The focus of this report is the improvement and the validation of semi-active control strategies, especially with MR dampers, for building protection from severe earthquakes. To make semi active control strategies more practical, further studies on both the numerical and experimental aspects of the problem are conducted. The research presented in this report contributes the improvement and prevalence of semi-active control strategies in building structures to mitigate seismic damage.Financial support for this research was provided in part by the Long Term Fellowship for Study Abroad by the MEXT (Ministry of Education, Culture, Sports, Science, and Technology, Japan) and the Newmark Account.Ope

    Structural control strategies for earthquake response reduction of buildings

    Get PDF
    Destructive seismic events continue to demonstrate the importance of mitigating these hazards to building structures. Structural control has been considered one of the most effective strategies to protect buildings from extreme dynamic events such as earthquakes and strong winds, and has been applied to numerous real buildings in recent years. Structural control strategies can be divided into four categories: passive, active, semi-active, and hybrid control. Because passive control systems are well understood and require no external power source, they have been accepted widely by the engineering community. However, these passive systems have the limitation of not being able to adapt to structural changes and to varying usage patterns and loading conditions. While active systems are able to adapt various conditions, they require a significant amount of power to generate the necessary large control forces; guaranteeing the availability of such power during seismic events is challenging. Moreover, the stability of active systems is not ensured. To compensate for the drawbacks of passive and active systems, semi active control systems have been proposed. Semi-active control devices possess the adaptability to flexible external inputs, do not require large power sources, and do not have the potential to destabilize the structural system. However, semi-active control has been slow to be accepted by engineering practitioners. The focus of this dissertation is the improvement and the validation of semi-active control strategies, especially with magnetorheological (MR) dampers, for building protection from severe earthquakes. To make semi-active control strategies more practical, further studies on both the numerical and experimental aspects of the problem are conducted. In the numerical studies, new algorithms for semi-active control are proposed. First, the nature of control forces produced by active control systems is investigated. The relationship between force-displacement hysteresis loops produced by the linear quadratic regulator (LQR) and the linear quadratic Gaussian (LQG) algorithms is explored. Then, new simple algorithms are proposed, which can produce versatile hysteresis loops. Moreover, the proposed algorithms do not require a model of the target structure to be implemented, which is a significant advantage. The seismic performance of the proposed algorithms on a scaled three-story building model is compared with the LQG-based clipped-optimal semi active control and LQG active control cases. In the experimental studies, the effectiveness of semi-active control strategies are shown through real-time hybrid simulation (RTHS) in which a MR damper is tested physically. In this dissertation, two new structural control methods proposed in the literature recently are investigated, i.e., smart outrigger damping systems for high-rise buildings and smart base isolation systems consisting of passive base isolations and semi-active control devices. The accuracy of the RTHS employing the model-based compensator for MDOF structures with a semi-active device is discussed as well. The research presented in this dissertation contributes the improvement and prevalence of semi-active control strategies in building structures to mitigate seismic damage

    Statistical Learning and Stochastic Process for Robust Predictive Control of Vehicle Suspension Systems

    Get PDF
    Predictive controllers play an important role in today's industry because of their capability of verifying optimum control signals for nonlinear systems in a real-time fashion. Due to their mathematical properties, such controllers are best suited for control problems with constraints. Also, these interesting controllers can be equipped with different types of optimization and learning modules. The main goal of this thesis is to explore the potential of predictive controllers for a challenging automotive problem, known as active vehicle suspension control. In this context, it is intended to explore both modeling and optimization modules using different statistical methodologies ranging from statistical learning to random process control. Among the variants of predictive controllers, learning-based model predictive controller (LBMPC) is becoming more and more interesting to the researchers of control society due to its structural flexibility and optimal performance. The current investigation will contribute to the improvement of LBMPC by adopting different statistical learning strategies and forecasting methods to improve the efficiency and robustness of learning performed in LBMPC. Also, advanced probabilistic tools such as reinforcement learning, absorbing state stochastic process, graphical modelling, and bootstrapping are used to quantify different sources of uncertainty which can affect the performance of the LBMPC when it is used for vehicle suspension control. Moreover, a comparative study is conducted using gradient-based as well as deterministic and stochastic direct search optimization algorithms for calculating the optimal control commands. By combining the well-established control and statistical theories, a novel variant of LBMPC is developed which not only affords stability and robustness, but also surpasses a wide range of conventional controllers for the vehicle suspension control problem. The findings of the current investigation can be interesting to the researchers of automotive industry (in particular those interested in automotive control), as several open issues regarding the potential of statistical tools for improving the performance of controllers for vehicle suspension problem are addressed

    Controlo Difuso com Modo Deslizante

    Get PDF
    Nesta dissertação propõe-se o desenvolvimento de metodologias de controlo difuso que exploram o conceito de modo deslizante, com o objetivo de construir uma arquitetura, que permita proporcionar um sistema de controlo adequado em termos de desempenho e robustez. As principais contribuições incluem a implementação de um controlador com inferência de Mamdani com modo deslizante, com superfície deslizante do tipo Proporcional-Derivitativo (PD) e, subsequentemente, do tipo Proporcional-Integral-Derivitativo (PID). O desempenho de cada um destes controladores foi avaliado e comparado com o controlador PID clássico, o controlador PID difuso com inferência de Mamdani e com o controlador convencional por modo deslizante. Foram realizados testes de simulação e, posteriormente, testes experimentais no processo didático AMIRA DTS 200, constituído por três vasos comunicantes. Os resultados obtidos comprovaram o bom desempenho dos controladores de Mamdani com modo deslizante, apresentando uma superfície deslizante do tipo PD e PID, validados através de testes no processo real

    System modelling and control

    Get PDF
    Not Availabl

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore