594 research outputs found

    Solutions to Integrals Involving the Marcum Q-Function and Applications

    Full text link
    Novel analytic solutions are derived for integrals that involve the generalized Marcum Q-function, exponential functions and arbitrary powers. Simple closed-form expressions are also derived for the specific cases of the generic integrals. The offered expressions are both convenient and versatile, which is particularly useful in applications relating to natural sciences and engineering, including wireless cpmmunications and signal processing. To this end, they are employed in the derivation of the channel capacity for fixed rate and channel inversion in the case of correlated multipath fading and switched diversity.Comment: 15 Pages, 2 Figure

    Analytic solutions to a Marcum Q-function-based integral and application in energy detection of unknown signals over multipath fading channels

    Full text link
    This work presents analytic solutions for a useful integral in wireless communications, which involves the Marcum Q−Q{-}function in combination with an exponential function and arbitrary power terms. The derived expressions have a rather simple algebraic representation which renders them convenient both analytically and computationally. Furthermore, they can be useful in wireless communications and particularly in the context of cognitive radio communications and radar systems, where this integral is often encountered. To this end, we derive novel expressions for the probability of detection in energy detection based spectrum sensing over η−μ\eta{-}\mu fading channels. These expressions are given in closed-form and are subsequently employed in analyzing the effects of generalised multipath fading conditions in cognitive radio systems. As expected, it is shown that the detector is highly dependent upon the severity of fading conditions as even slight variation of the fading parameters affect the corresponding performance significantly.Comment: Latest/Preprint Versio

    An Approximation of the First Order Marcum QQ-Function with Application to Network Connectivity Analysis

    Full text link
    An exponential-type approximation of the first order Marcum QQ-function is presented, which is robust to changes in its first argument and can easily be integrated with respect to the second argument. Such characteristics are particularly useful in network connectivity analysis. The proposed approximation is exact in the limit of small first argument of the Marcum QQ-function, in which case the optimal parameters can be obtained analytically. For larger values of the first argument, an optimization problem is solved, and the parameters can be accurately represented using regression analysis. Numerical results indicate that the proposed methods result in approximations very close to the actual Marcum QQ-function for small and moderate values of the first argument. We demonstrate the accuracy of the approximation by using it to analyze the connectivity properties of random ad hoc networks operating in a Rician fading environment.Comment: 6 pages, 4 figures, 1 tabl
    • …
    corecore