53 research outputs found

    A Reinforcement Learning-assisted Genetic Programming Algorithm for Team Formation Problem Considering Person-Job Matching

    Full text link
    An efficient team is essential for the company to successfully complete new projects. To solve the team formation problem considering person-job matching (TFP-PJM), a 0-1 integer programming model is constructed, which considers both person-job matching and team members' willingness to communicate on team efficiency, with the person-job matching score calculated using intuitionistic fuzzy numbers. Then, a reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions. The RL-GP adopts the ensemble population strategies. Before the population evolution at each generation, the agent selects one from four population search modes according to the information obtained, thus realizing a sound balance of exploration and exploitation. In addition, surrogate models are used in the algorithm to evaluate the formation plans generated by individuals, which speeds up the algorithm learning process. Afterward, a series of comparison experiments are conducted to verify the overall performance of RL-GP and the effectiveness of the improved strategies within the algorithm. The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams. This study reveals the advantages of reinforcement learning methods, ensemble strategies, and the surrogate model applied to the GP framework. The diversity and intelligent selection of search patterns along with fast adaptation evaluation, are distinct features that enable RL-GP to be deployed in real-world enterprise environments.Comment: 16 page

    ProblĂšmes de tournĂ©es en viabilitĂ© hivernale utilisant la prĂ©vision des volumes d’épandage

    Get PDF
    RÉSUMÉ : Cette thĂšse combine deux domaines de recherche diffĂ©rents appliquĂ©s au dĂ©neigement : la recherche opĂ©rationnelle et la science des donnĂ©es. La science des donnĂ©es a Ă©tĂ© utilisĂ©e pour dĂ©velopper un modĂšle de prĂ©diction de quantitĂ© de sel et d’abrasif avec une mĂ©thodologie d’apprentissage machine; par la suite, ce modĂšle est pris en compte pour la confection des tournĂ©es de vĂ©hicules. La confection des tournĂ©es a Ă©tĂ© Ă©laborĂ©e en utilisant des outils de la recherche opĂ©rationnelle, qui servent Ă  optimiser les tournĂ©es en considĂ©rant plusieurs contraintes et en intĂ©grant les donnĂ©es rĂ©elles. La thĂšse est le fruit d’une collaboration avec deux villes quĂ©bĂ©coises, Granby et Saint-Jean-sur- Richelieu. Elle traite une application rĂ©elle en viabilitĂ© hivernale, qui est l’opĂ©ration d’épandage. Cette opĂ©ration est une activitĂ© nĂ©cessaire, dont le but est d’assurer une meilleure circulation routiĂšre. Cependant, cela se rĂ©alise avec un coĂ»t Ă©conomique et environnemental important. Par consĂ©quent, la rĂ©duction de ce coĂ»t devient une grande prĂ©occupation. Cette thĂšse contribue significativement aux opĂ©rations d’épandage : premiĂšrement, nous prĂ©disons la quantitĂ© nĂ©cessaire de sel et d’abrasif Ă  Ă©pandre afin d’éviter le surĂ©pandage; deuxiĂšmement, nous optimisons les tournĂ©es des opĂ©rations d’épandage en considĂ©rant la variation de la quantitĂ©. La premiĂšre contribution de cette thĂšse consiste en un modĂšle de prĂ©diction des quantitĂ©s de sel et d’abrasif pour chaque segment de rue et pour chaque heure, en utilisant des algorithmes d’apprentissage machine. L’importance de cette contribution rĂ©side d’une part dans l’intĂ©gration des donnĂ©es gĂ©omatiques avec les donnĂ©es mĂ©tĂ©o-routiĂšres, et d’autre part dans l’extraction des variables importantes (feature engineering) pour le modĂšle de prĂ©diction. Plusieurs algorithmes d’apprentissage machine ont Ă©tĂ© Ă©valuĂ©s : (les forĂȘts alĂ©atoires, les arbres extrĂȘmement alĂ©atoires, les rĂ©seaux de neurones artificiels, Adaboost, Gradient Boosting Machine et XGBoost). Le modĂšle Ă©laborĂ© par XGBoost a rĂ©alisĂ© une meilleure performance. Le modĂšle de prĂ©diction permet non seulement de prĂ©dire les quantitĂ©s de sel et d’abrasif nĂ©cessaires Ă  Ă©pandre mais aussi, d’identifier les variables les plus importantes pour la prĂ©diction. Cette information reprĂ©sente un outil de dĂ©cision intĂ©ressant pour les gestionnaires. L’identification des variables importantes pourrait amĂ©liorer les opĂ©rations de dĂ©neigement. D’aprĂšs les rĂ©sultats trouvĂ©s, le facteur humain (conducteur) influence significativement la quantitĂ© d’épandage; donc, le contrĂŽle de ce facteur peut amĂ©liorer considĂ©rablement ces opĂ©rations. La deuxiĂšme contribution introduit un nouveau problĂšme dans la littĂ©rature : le problĂšme de tournĂ©es de vĂ©hicules gĂ©nĂ©rales avec capacitĂ© dont la quantitĂ© de sel et d’abrasif dĂ©pend du temps. Le problĂšme est basĂ© sur l’hypothĂšse que le modĂšle de prĂ©diction est capable de fournir la quantitĂ© d’épandage pour chaque segment et pour chaque heure avec une bonne prĂ©cision. Le fait d’avoir cette information pour chaque heure et pour chaque segment de rue, introduit la notion du temps dĂ©pendant. Le nouveau problĂšme est modĂ©lisĂ© Ă  l’aide d’une formulation mathĂ©matique sur le graphe original, ce qui prĂ©sente un dĂ©fi de modĂ©lisation. En effet, il est difficile d’associer des temps de dĂ©but et de fin uniques Ă  un arc ou Ă  une arĂȘte. Une mĂ©taheuristique basĂ©e sur la stratĂ©gie de destruction et construction a Ă©tĂ© dĂ©veloppĂ©e pour rĂ©soudre les grandes instances. La mĂ©taheuristique est inspirĂ©e de SISRs (Slack Induction by String Removals). Elle considĂšre la demande dĂ©pendante du temps et la prĂ©sence des arĂȘtes par la mĂ©thode d’évaluation basĂ©e sur la programmation dynamique. De nouvelles instances ont Ă©tĂ© crĂ©Ă©es Ă  partir des instances des problĂšmes de tournĂ©es de vĂ©hicules gĂ©nĂ©rales avec contrainte de capacitĂ© avec demande fixe. Elles ont Ă©tĂ© gĂ©nĂ©rĂ©es Ă  partir de diffĂ©rents types de fonction dont la demande dĂ©pend du temps. La troisiĂšme contribution propose une nouvelle approche, dans le but de prĂ©senter le niveau de prioritĂ© des rues (la hiĂ©rarchie de service) sous forme d’une fonction linĂ©aire dĂ©pendante du temps. Le problĂšme prĂ©sentĂ© dans cette contribution concerne des tournĂ©es de vĂ©hicules gĂ©nĂ©rales hiĂ©rarchiques avec contrainte de capacitĂ© sous l’incertitude de la demande. Lorsque les donnĂ©es collectĂ©es ne permettent pas de dĂ©velopper un bon modĂšle de prĂ©diction, la notion de demande dĂ©pendante du temps n’est plus valide. L’approche robuste a dĂ©montrĂ© une grande rĂ©ussite pour traiter et rĂ©soudre les problĂšmes avec incertitude. Une mĂ©taheuristique robuste a Ă©tĂ© proposĂ©e pour rĂ©soudre les deux cas rĂ©els de Granby et de Saint-Jean-sur-Richelieu. La mĂ©taheuristique a Ă©tĂ© validĂ©e par un modĂšle mathĂ©matique sur les petites instances gĂ©nĂ©rĂ©es Ă  partir des cas rĂ©els. La simulation de Monte Carlo a Ă©tĂ© utilisĂ©e pour Ă©valuer les diffĂ©rentes solutions proposĂ©es. En outre, elle permet d’offrir aux gestionnaires un outil de dĂ©cision pour comparer les diffĂ©rentes solutions robustes, et aussi pour comprendre le compromis entre le niveau de robustesse souhaitĂ© et d’autres mesures de performances (coĂ»t, risque, niveau de service).----------ABSTRACT : This thesis combines two different fields applied to winter road maintenance : operational research and data science. Data science was used to develop a prediction model for the quantity of salt and abrasive with a machine learning methodology, later this model is considered for building vehicles routing. This route planning was developed using operational research which seeks to optimize routes by looking at several constraints and by integrating real data. The thesis which is the fruit of a collaboration with two Canadian cities Granby and Saint-Jean-sur-Richelieu, deals with a real application in winter road maintenance which is the spreading operation. The spreading operation presents an activity necessary for winter road maintenance, in order to ensure better road traffic. However, this road safety comes with a significant economic and environmental cost, which creates a great concern in order to reduce the economic and environmental impact. This thesis contributes significantly in the spreading operations : firstly, predicting the necessary quantity of salt and abrasive to be spread in order to avoid over-spreading, secondly optimizing the spreading operations routes considering quantity variations. The first contribution of this thesis is to develop a prediction model for the quantities of salt and abrasive using machine learning algorithms, for each street segment and for each hour. The importance of this contribution lies in the integration of geomatic data with weather-road data, and also the feature engineering. Several machine learning algorithms were evaluated (Random Forest, Extremely Random Trees, Artificial Neural Networks, Adaboost, Gradient Boosting Machine and XGBoost); ultimately XGBoost performed better. The prediction model not only predicts the amounts of salt and abrasive needed to spread, but also identifies the most important variables in the model. This information presents an interesting decision-making tool for managers. The identification of important variables could improve snow removal operations. According to the results, the human factor (driver) significantly influences the amount of spreading, so controlling this factor can significantly improve the spreading operations.The second contribution introduces a new problem in the literature : the mixed capacitated general routing problem with time-dependent demand; the problem is based on the assumption that the prediction model is able to provide the amount of spreading for each segment and for each hour with good accuracy. Having this information for each hour and for each street segment introduces the concept of time dependency. The new problem was modeled using a mathematical formulation on the original graph, which presents a modeling challenge since it is difficult to associate a unique starting and ending time to an arc or edge. A meta-heuristic based on the destruction and construction strategy has been developed to solve large-scale instances. The meta-heuristic is inspired by SISRs considers time-dependent demand and the presence of edges by an evaluation method based on dynamic programming. New instances were created from the instances of the mixed capacitated general routing problem with fixed demand; the new instances were generated from different types of function where the demand varies with time. The third contribution proposes a new approach to present the service hierarchy or the priority level of streets, as a time-dependent linear function. The problem addressed in this contribution concerns the hierarchical mixed capacitated general routing problems under demand uncertainty. When the collected data does not allow the development of a good prediction model, the concept of time-dependent demand is no longer valid. The robust approach has demonstrated great success in resolving and dealing with problems with uncertainty. A robust meta-heuristic was proposed to solve the two real cases Granby and Saint-Jean-sur-Richelieu, the meta-heuristic was validated by a mathematical model on small instances generated from the real cases. The Monte Carlo simulation was used, on the one hand, to evaluate the different solutions proposed, and, on the other hand, to offer managers a decision tool to compare the different robust solutions and also to understand the trade-off between the desired level of robustness, and other performance measures (cost, risk, level of service)

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratĂšgics com el transport i la producciĂł representen problemes NP-difĂ­cils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurĂ­stiques sĂłn mĂštodes populars per a resoldre problemes d'optimitzaciĂł difĂ­cils en temps de cĂ lcul raonables. No obstant aixĂČ, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions sĂłn deterministes i conegudes. Aquests constitueixen supĂČsits forts que obliguen a treballar amb problemes simplificats. Com a conseqĂŒĂšncia, les solucions poden conduir a resultats pobres. Les simheurĂ­stiques integren la simulaciĂł a les metaheurĂ­stiques per resoldre problemes estocĂ stics d'una manera natural. AnĂ logament, les learnheurĂ­stiques combinen l'estadĂ­stica amb les metaheurĂ­stiques per fer front a problemes en entorns dinĂ mics, en quĂš els inputs poden dependre de l'estructura de la soluciĂł. En aquest context, les principals contribucions d'aquesta tesi sĂłn: el disseny de les learnheurĂ­stiques, una classificaciĂł dels treballs que combinen l'estadĂ­stica / l'aprenentatge automĂ tic i les metaheurĂ­stiques, i diverses aplicacions en transport, producciĂł, finances i computaciĂł.Un gran nĂșmero de procesos de toma de decisiones en sectores estratĂ©gicos como el transporte y la producciĂłn representan problemas NP-difĂ­ciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurĂ­sticas son mĂ©todos populares para resolver problemas difĂ­ciles de optimizaciĂłn de manera rĂĄpida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurĂ­sticas integran simulaciĂłn en metaheurĂ­sticas para resolver problemas estocĂĄsticos de una manera natural. De manera similar, las learnheurĂ­sticas combinan aprendizaje estadĂ­stico y metaheurĂ­sticas para abordar problemas en entornos dinĂĄmicos, donde los inputs pueden depender de la estructura de la soluciĂłn. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurĂ­sticas, una clasificaciĂłn de trabajos que combinan estadĂ­stica / aprendizaje automĂĄtico y metaheurĂ­sticas, y varias aplicaciones en transporte, producciĂłn, finanzas y computaciĂłn.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Genetic Programming is Naturally Suited to Evolve Bagging Ensembles

    Get PDF
    Learning ensembles by bagging can substantially improve the generalization performance of low-bias, high-variance estimators, including those evolved by Genetic Programming (GP). To be efficient, modern GP algorithms for evolving (bagging) ensembles typically rely on several (often inter-connected) mechanisms and respective hyper-parameters, ultimately compromising ease of use. In this paper, we provide experimental evidence that such complexity might not be warranted. We show that minor changes to fitness evaluation and selection are sufficient to make a simple and otherwise-traditional GP algorithm evolve ensembles efficiently. The key to our proposal is to exploit the way bagging works to compute, for each individual in the population, multiple fitness values (instead of one) at a cost that is only marginally higher than the one of a normal fitness evaluation. Experimental comparisons on classification and regression tasks taken and reproduced from prior studies show that our algorithm fares very well against state-of-the-art ensemble and non-ensemble GP algorithms. We further provide insights into the proposed approach by (i) scaling the ensemble size, (ii) ablating the changes to selection, (iii) observing the evolvability induced by traditional subtree variation. Code: https://github.com/marcovirgolin/2SEGP.Comment: Added interquartile range in tables 1, 2, and 3; improved Fig. 3 and its analysis, improved experiment design of section 7.

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    The bid construction problem for truckload transportation services procurement in combinatorial auctions : new formulations and solution methods

    Get PDF
    De nos jours, l'Ă©volution du commerce Ă©lectronique ainsi que des niveaux de la consommation requiĂšrent des acteurs de la chaine logistique et en particulier les transporteurs de gĂ©rer efficacement leurs opĂ©rations. Afin de rester concurrentiels et maximiser leurs profits, ils doivent optimiser leurs opĂ©rations de transport. Dans cette thĂšse de doctorat, nous nous focalisons sur les enchĂšres combinatoires en tant que mĂ©canisme de nĂ©gociation pour les marchĂ©s d'approvisionnement des services de transport routier par camions permettant Ă  un expĂ©diteur d'externaliser ses opĂ©rations de transport et aux transporteurs d'acquĂ©rir des contrats de transport. Les mises combinatoires permettent Ă  un transporteur participant Ă  l'enchĂšre d'exprimer ses intĂ©rĂȘts pour une combinaison de contrats mis Ă  l'enchĂšre dans une mĂȘme mise. Si la mise gagne, tous les contrats qui la forment seront allouĂ©s au transporteur au tarif exigĂ©. Les dĂ©fis majeurs pour le transporteur sont de dĂ©terminer les contrats de transport sur lesquels miser, les regrouper dans plusieurs mises combinatoires, s'il y a lieu, et dĂ©cider des prix Ă  soumettre pour chaque mise gĂ©nĂ©rĂ©e. Ces dĂ©fis dĂ©cisionnels dĂ©finissent le problĂšme de construction de mises combinatoires (BCP pour Bid Construction Problem). Chaque transporteur doit rĂ©soudre le BCP tout en respectant ses engagements prĂ©existants et ses capacitĂ©s de transport et en tenant compte des offres des compĂ©titeurs, ce qui rend le problĂšme difficile Ă  rĂ©soudre. Dans la pratique, la majoritĂ© des transporteurs se basent sur leur connaissance du marchĂ© et leur historique pour fixer leurs prix des mises. Dans la littĂ©rature, la majoritĂ© des travaux sur le BCP considĂšrent des modĂšles dĂ©terministes oĂč les paramĂštres sont connus et se limitent Ă  un contexte de flotte homogĂšne. En plus, nous notons qu'un seul travail Ă  considĂ©rer une variante stochastique du BCP. Dans cette thĂšse de doctorat, nous visons Ă  faire avancer les connaissances dans ce domaine en introduisant de nouvelles formulations et mĂ©thodes de rĂ©solution pour le BCP Le premier chapitre de cette thĂšse introduit une nouvelle variante du BCP avec une flotte hĂ©tĂ©rogĂšne. En partant d'une comparaison des similitudes et des diffĂ©rences entre le BCP et les problĂšmes classiques de de tournĂ©es de vĂ©hicules, nous proposons une nouvelle formulation basĂ©e sur les arcs avec de nouvelles contraintes de bris de symĂ©trie pour accĂ©lĂ©rer la rĂ©solution. Ensuite, nous proposons une approche heuristique et une autre exacte pour rĂ©soudre ce problĂšme. L'heuristique dĂ©veloppĂ©e est une recherche adaptative Ă  grands voisinages (ALNS pour Adaptive Large Neighborhood Search) et se base sur le principe de destruction puis rĂ©paration de la solution Ă  l'aide d'opĂ©rateurs conçus spĂ©cifiquement pour le BCP traitĂ©. La mĂ©thode exacte utilise la meilleure solution heuristique pour rĂ©soudre notre modĂšle mathĂ©matique avec le solveur CPLEX. Les rĂ©sultats obtenus montrent la pertinence de nos mĂ©thodes en termes de qualitĂ©s des solutions et des temps de calculs et ce pour des instances de grande taille. Dans le deuxiĂšme chapitre, nous nous attaquons Ă  un cas particulier du BCP oĂč le transporteur n'a pas d'engagements existants et vise Ă  dĂ©terminer un ensemble de contrats mis Ă  l'enchĂšre profitables Ă  miser dessus. Cette problĂ©matique correspond Ă  un problĂšme de tournĂ©es de vĂ©hicules avec profits (TOP pour Team Orienteering Problem). Nous proposons pour le TOP une heuristique ALNS hybride avec de nouveaux opĂ©rateurs ainsi que de nouvelles fonctionnalitĂ©s tenant compte de la nature du problĂšme. Ensuite, nous comparons les performances de notre mĂ©thode avec toutes les mĂ©thodes dĂ©jĂ  publiĂ©es dans la littĂ©rature traitant du TOP. Les rĂ©sultats montrent que notre mĂ©thode surpasse gĂ©nĂ©ralement toutes les approches existantes en termes de qualitĂ© des solutions et/ou temps de calculs quand elle est testĂ©e sur toutes les instances de la littĂ©rature. Notre mĂ©thode amĂ©liore la solution d'une instance de grande taille, ce qui surligne sa performance. Dans le troisiĂšme chapitre, nous nous focalisons sur l'incertitude associĂ©e aux prix de cessions des contrats mis Ă  l'enchĂšre et sur les offres des transporteurs concurrents. Il n'existe qu'un seul article qui traite de l'incertitude dans le BCP cependant il ne permet pas de gĂ©nĂ©rer des mises multiples. Ainsi, nous proposons une nouvelle formulation pour le BCP avec des prix stochastiques permettant de gĂ©nĂ©rer des mises combinatoires et disjointes. Nous prĂ©sentons deux mĂ©thodes pour rĂ©soudre ce problĂšme. La premiĂšre mĂ©thode est hybride et Ă  deux Ă©tapes. Dans un premier temps, elle rĂ©sout un problĂšme de sĂ©lection pour dĂ©terminer un ensemble de contrats profitables. Dans un second temps, elle rĂ©sout simultanĂ©ment un problĂšme de sĂ©lection de contrats et de dĂ©termination de prix des mises (CSPP pour Contracts Selection and Pricing Problem) en ne considĂ©rant que les contrats sĂ©lectionnĂ©s dans la premiĂšre Ă©tape. Notre mĂ©thode exacte rĂ©sout, avec l'algorithme de branch-and-cut, le CSPP sans prĂ©sĂ©lectionner des contrats. Les rĂ©sultats expĂ©rimentaux et de simulations que nous rapportons soulignent la performance de nos deux mĂ©thodes et Ă©valuent l'impact de certains paramĂštres sur le profit rĂ©el du transporteur. Dans le quatriĂšme chapitre, nous nous focalisons sur l'incertitude liĂ©e au succĂšs des mises et Ă  la non-matĂ©rialisation des contrats. GĂ©nĂ©ralement, le transporteur souhaite avoir la garantie que si certaines des mises ne sont pas gagnĂ©es ou un contrat ne se matĂ©rialise pas, il n'encourra pas de perte en servant le sous-ensemble de contrats gagnĂ©s. Dans cette recherche, nous adressons le BCP avec prix stochastiques et dĂ©veloppons une mĂ©thode exacte qui garantit un profit non nĂ©gatif pour le transporteur peu importe le rĂ©sultat des enchĂšres. Nos simulations des solutions optimales dĂ©montrent, qu'en moyenne, notre approche permet au transporteur d'augmenter son profit en plus de garantir qu'il reste non-nĂ©gatif peu importe les mises gagnĂ©es ou la matĂ©rialisation des contrats suivant l'enchĂšre.Nowadays, the evolution of e-commerce and consumption levels require supply chain actors, in particular carriers, to efficiently manage their operations. In order to remain competitive and to maximize their profits, they must optimize their transport operations. In this doctoral thesis, we focus on Combinatorial Auctions (CA) as a negotiation mechanism for truckload (TL) transportation services procurement allowing a shipper to outsource its transportation operations and for a carrier to serve new transportation contracts. Combinatorial bids offer a carrier the possibility to express his valuation for a combination of contracts simultaneously. If the bid is successful, all the contracts forming it will be allocated to the carrier at the submitted price. The major challenges for a carrier are to select the transportation contracts to bid on, formulate combinatorial bids and associated prices. These decision-making challenges define the Bid Construction Problem (BCP). Each carrier must solve a BCP while respecting its pre-existing commitments and transportation capacity and considering unknown competitors' offers, which makes the problem difficult to solve. In practice, the majority of carriers rely on their historical data and market knowledge to set their prices. In the literature, the majority of works on the BCP propose deterministic models with known parameters and are limited to the problem with a homogeneous fleet. In addition, we found a single work addressing a stochastic BCP. In this thesis, we aim to advance knowledge in this field by introducing new formulations and solution methods for the BCP. The first chapter of this thesis introduces the BCP with a heterogeneous fleet. Starting from a comparison between the BCP and classical Vehicle Routing Problems (VRPs), we propose a new arc-based formulation with new symmetry-breaking constraints for the BCP. Next, we propose exact and heuristic approaches to solve this problem. Our Adaptive Large Neighborhood Search (ALNS) heuristic is based on a destroy-repair principle using operators designed for this problem. Our exact method starts from the heuristic solution and solves our mathematical model with CPLEX. The results we obtained revealed the relevance of our methods in terms of solutions quality and computational times for large instances with up to 500 contracts and 50 vehicles. In the second chapter, we tackle a particular case of the BCP where the carrier has no pre-existing commitments and aims to select a set of profitable auctioned contracts to bid on. This problem corresponds to a Team Orienteering Problem (TOP). We propose a hybrid ALNS heuristic for the TOP with new operators as well as new features taking into account the nature of the problem. Then, we compare the performance of our algorithm against the best solutions from the literature. The results show that our method generally outperforms all the existing ones in terms of solutions quality and/or computational times on benchmark instances. Our method improves one large instance solution, which highlights its performance. In the third chapter, we focus on the uncertainty associated with the auctioned contracts clearing prices and competing carriers offers. Only one article dealing with uncertainty in the BCP existed but it does not allow to generate multiple bids. Thus, we propose a new formulation for the BCP with stochastic prices allowing to generate non-overlapping combinatorial bids. We present two methods to solve this problem. The first one is a two-step hybrid heuristic. First, it solves a Contracts Selection Problem to determine a set of profitable contracts to bid on. Secondly, it simultaneously solves a Contracts Selection and Pricing Problem (CSPP) by considering only the set of auctioned contracts selected in the first stage. Our exact method solves a CSPP by branch-and-cut without pre-selecting contracts. The experimental and simulation results underline the performance of our two methods and evaluate the impact of certain parameters on the carrier's real profit. In the fourth chapter, we focus on the uncertainty associated with bids success and contracts non-materialization. Generally, the carrier seeks to be assured that if some of the submitted bids are not won or a contract does not materialize, it will not incur a loss by serving the remaining contracts. In this research, we address the BCP with stochastic prices and develop an exact method that ensures a non-negative profit for the carrier regardless of the auction outcomes and contracts materialization. Our simulations of the optimal solutions show that, on average, our approach increases the carrier's profit in addition to guaranteeing its non-negativity regardless of the bids won or the contracts materialization
    • 

    corecore