693 research outputs found

    Nonlinear system identification for model-based condition monitoring of wind turbines

    Get PDF
    This paper proposes a data driven model-based condition monitoring scheme that is applied to wind turbines. The scheme is based upon a non-linear data-based modelling approach in which the model parameters vary as functions of the system variables. The model structure and parameters are identified directly from the input and output data of the process. The proposed method is demonstrated with data obtained from a simulation of a grid-connected wind turbine where it is used to detect grid and power electronic faults. The method is evaluated further with SCADA data obtained from an operational wind farm where it is employed to identify gearbox and generator faults. In contrast to artificial intelligence methods, such as artificial neural network-based models, the method employed in this paper provides a parametrically efficient representation of non-linear processes. Consequently, it is relatively straightforward to implement the proposed model-based method on-line using a field-programmable gate array

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Data-driven model-based approaches to condition monitoring and improving power output of wind turbines

    Get PDF
    The development of the wind farm has grown dramatically in worldwide over the past 20 years. In order to satisfy the reliability requirement of the power grid, the wind farm should generate sufficient active power to make the frequency stable. Consequently, many methods have been proposed to achieve optimizing wind farm active power dispatch strategy. In previous research, it assumed that each wind turbine has the same health condition in the wind farm, hence the power dispatch for healthy and sub-healthy wind turbines are treated equally. It will accelerate the sub-healthy wind turbines damage, which may leads to decrease generating efficiency and increases operating cost of the wind farm. Thus, a novel wind farm active power dispatch strategy considering the health condition of wind turbines and wind turbine health condition estimation method are the proposed. A modelbased CM approach for wind turbines based on the extreme learning machine (ELM) algorithm and analytic hierarchy process (AHP) are used to estimate health condition of the wind turbine. Essentially, the aim of the proposed method is to make the healthy wind turbines generate power as much as possible and reduce fatigue loads on the sub-healthy wind turbines. Compared with previous methods, the proposed methods is able to dramatically reduce the fatigue loads on subhealthy wind turbines under the condition of satisfying network operator active power demand and maximize the operation efficiency of those healthy turbines. Subsequently, shunt active power filters (SAPFs) are used to improve power quality of the grid by mitigating harmonics injected from nonlinear loads, which is further to increase the reliability of the wind turbine system

    Condition Monitoring System of Wind Turbine Generators

    Get PDF
    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators\u27 faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential failures during operation due to high generator temperatures. In addition, the use of some advanced statistical techniques, such as regression models, is proposed to perform a CMS on wind generators. Further, the mechanical and thermal characteristics are employed to diagnose the faults that can occur in wind generators. The rate of change in the generator temperature with respect to the induced electrical torque; for instance is considered as an indicator to the occurrence of faults in the generators. The behavior of the driving torque of the rotating permanent magnet with respect to the permanent magnet temperature can also utilize to indicate the operation condition. The permanent magnet model describes the rotating permanent magnet condition during operation in the normal and abnormal situations. In this context, a set of partial differential equations is devolved for the characterization of the rotations of the permanent. Finally, heat transfer analysis and fluid mechanics methods are employed to develop a suitable CMS on the wind generators by analyzing the operation conditions of the generator\u27s heat exchanger. The proposed methods applied based on real data of different wind turbines, and the obtained results were very convincing

    Simultaneous fault detection and sensor selection for condition monitoring of wind turbines

    Get PDF
    Data collected from the supervisory control and data acquisition (SCADA) system are used widely in wind farms to obtain operation and performance information about wind turbines. The paper presents a three-way model by means of parallel factor analysis (PARAFAC) for wind turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained from an operational farm. The main characteristic of this new approach is that it can be used to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding potentially relevant information for feature extraction. With K-means clustering method, the measurement data indicating normal, fault and alarm conditions of the wind turbines can be identified, and the sensor array can be optimised for effective condition monitoring

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Intelligent Control and Protection Methods for Modern Power Systems Based on WAMS

    Get PDF

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Wind turbine fault detection and identification through PCA-based optimal variable selection

    Get PDF
    An effective condition monitoring system of wind turbines generally requires installation of a high number of sensors and use of a high sampling frequency in particular for monitoring of the electrical components within a turbine, resulting in a large amount of data. This can become a burden for condition monitoring and fault detection systems. This paper aims to develop algorithms that will allow a reduced dataset to be used in wind turbine fault detection. The paper firstly proposes a variable selection algorithm based on principal component analysis (PCA) with multiple selection criteria in order to select a set of variables to target fault signals while still preserving the variation of data in the original dataset. With the selected variables, the paper then describes fault detection and identification algorithms, which can identify faults, determine the corresponding time and location where the fault occurs, and estimate its severity. The proposed algorithms are evaluated with simulation data from PSCAD/EMTDC, SCADA (Supervisory control and data acquisition) data from an operational wind farm, and experimental data from a wind turbine test rig. Results show that the proposed methods can select a reduced set of variables with minimal information lost whilst detecting faults efficiently and effectively

    Application and Control Aware Communication Strategies for Transportation and Energy Cyber-Physical Systems

    Get PDF
    Cyber--Physical Systems (CPSs) are a generation of engineered systems in which computing, communication, and control components are tightly integrated. Some important application domains of CPS are transportation, energy, and medical systems. The dynamics of CPSs are complex, involving the stochastic nature of communication systems, discrete dynamics of computing systems, and continuous dynamics of control systems. The existence of communication between and among controllers of physical processes is one of the basic characteristics of CPSs. Under this situation, some fundamental questions are: 1) How does the network behavior (communication delay, packet loss, etc.) affect the stability of the system? 2) Under what conditions is a complex system stabilizable?;In cases where communication is a component of a control system, scalability of the system becomes a concern. Therefore, one of the first issues to consider is how information about a physical process should be communicated. For example, the timing for sampling and communication is one issue. The traditional approach is to sample the physical process periodically or at predetermined times. An alternative is to sample it when specific events occur. Event-based sampling requires continuous monitoring of the system to decide a sample needs to be communicated. The main contributions of this dissertation in energy cyber-physical system domain are designing and modeling of event-based (on-demand) communication mechanisms. We show that in the problem of tracking a dynamical system over a network, if message generation and communication have correlation with estimation error, the same performance as the periodic sampling and communication method can be reached using a significantly lower rate of data.;For more complex CPSs such as vehicle safety systems, additional considerations for the communication component are needed. Communication strategies that enable robust situational awareness are critical for the design of CPSs, in particular for transportation systems. In this dissertation, we utilize the recently introduced concept of model-based communication and propose a new communication strategy to address this need. Our approach to model behavior of remote vehicles mathematically is to describe the small-scale structure of the remote vehicle movement (e.g. braking, accelerating) by a set of dynamic models and represent the large-scale structure (e.g. free following, turning) by coupling these dynamic models together into a Markov chain. Assuming model-based communication approach, a novel stochastic model predictive method is proposed to achieve cruise control goals and investigate the effect of new methodology.;To evaluate the accuracy and robustness of a situational awareness methodology, it is essential to study the mutual effect of the components of a situational awareness subsystem, and their impact on the accuracy of situational awareness. The main components are estimation and networking processes. One possible approach in this task is to produce models that provide a clear view into the dynamics of these two components. These models should integrate continuous physical dynamics, expressed with ordinary differential equations, with the discrete behaviors of communication, expressed with finite automata or Markov chain. In this dissertation, a hybrid automata model is proposed to combine and model both networking and estimation components in a single framework and investigate their interactions.;In summary, contributions of this dissertation lie in designing and evaluating methods that utilize knowledge of the physical element of CPSs to optimize the behavior of communication subsystems. Employment of such methods yields significant overall system performance improvement without incurring additional communication deployment costs
    corecore