52 research outputs found

    Joint Use of On-board Reconfigurable Antenna Pattern and Adaptive Coding and Modulation in Satellite Communications at High Frequency Bands

    Get PDF
    The Telecommunication market is driven by the increasing need of the end users for multimedia services which require high data rates. Within the fixed satellite service, frequency bandwidths wide enough to carry such high data rates are to be found in Ka band (26-40 GHz), and Q/V bands (40-50 GHz). However, at Ka band and above, transmitted signals can be severely affected by tropospheric attenuation for substantial percentages of time, resulting in the degradation of the quality and of the availability of communication services. Fade Mitigation Techniques (FMTs) must be used to counteract these severe propagation impairments. In this thesis we explore the joint use of two of the most promising techniques, known as Reconfigurable Antenna and Adaptive Coding and Modulation, which up to now has been separately developed. Some of our accomplishments include, but are not limited to: a methodology to describe rain attenuation conditions for multiple users in large geographical areas, a tractable framework for the generation of correlated time series of rain attenuation for multiple receiving stations, the comparison of performance between fixed antenna systems and Reconfigurable Antenna system coupled with Adaptive Coding and Modulation

    Site diversity gain for earth-to-satellite links using rain intensity measurement

    Get PDF
    Site diversity technique is effective method to overcome rain attenuation, mostly in the tropics where high precipitation is predominant. The method is analyzed based on measurements in two locations separated by 37.36 Km in Malaysia. From concurrent measured rain intensities of two locations at IIUM and UKM for one year, it was found that only ten concurrent events had occurred containing highest rain intensities of 18 mm/h with outage probability of 0.00154% on two locations out of about 381 events experienced over one year period. These findings will be very useful for Earth-to-satellite link designers to improve reliability by applying site diversity as a rain fade mitigation technique at any frequency. Keywords: Site diversity technique, Rain intensity, Site diversity gain, Perdiction model

    Site Diversity Gain for Earth-to-Satellite Links Using Rain Intensity Measurement

    Get PDF
    Site diversity technique is effective method to overcome rain attenuation, mostly in the tropics where high precipitation is predominant. The method is analyzed based on measurements in two locations separated by 37.36 Km in Malaysia. From concurrent measured rain intensities of two locations at IIUM and UKM for one year, it was found that only ten concurrent events had occurred containing highest rain intensities of 18 mm/h with outage probability of 0.00154% on two locations out of about 381 events experienced over one year period. These findings will be very useful for Earth-to-satellite link designers to improve reliability by applying site diversity as a rain fade mitigation technique at any frequency

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Interference analysis of broadband space and terrestrial fixed radio communications systems in the frequency range 12 to 30 GHz

    Get PDF
    This thesis presents research into the principles of spectrum sharing analysis methods developed for investigating implications of interference from Nongeostationary Fixed Satellite Service (NGSO FSS) systems into Geostationary Fixed Satellite Service (GSO FSS) systems and Fixed Service (FS) terrestrial radio systems operating or planned for operation in the 12 to 30 GHz frequency range. Spectrum sharing is an effective way of allowing new services to operate without cancelling the existing allocations in the same part of the spectrum. The use of spectrum sharing results in re-use of the available spectrum among different services and, therefore, increases the efficient use of the radio frequencies. However, it is necessary to carry out extensive feasibility studies into technical or operational compatibility between the services involved. Often, sharing constraints are placed on systems, such as the power of emissions and the transmitter and receiver antenna pointings to reduce the interference into negligible levels. Traditionally, radio spectrum allocated to GSO FSS has been shared with FS. In recent years, there has been a growing interest in the use of low Earth orbits and a number of NGSO FSS constellations has been designed to provide broadband data services. This has led to the allocation of certain bands used by the FS and GSO FSS systems to NGSO FSS. In line with the new allocations, NGSO FSS, GSO FSS and FS systems are required to co-exist in parts of the 12 to 30 GHz frequency range. The primary objectives of this research were to identify principal factors affecting the feasibility of spectrum sharing and to develop spectrum sharing analysis methodologies to examine the implications of these factors with a view to identifying sharing constraints that would give rise to an acceptable sharing environment

    Ground‐to‐GEO optical feeder links for very high throughput satellite networks: Accent on diversity techniques

    Get PDF
    This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical frequencies. Focusing on a GEO scenario, the paper considers a system‐wide approach investigating various challenges of optical feeder links. These include transmission schemes amenable for transparent on‐board processing, optical channel models taking into account blockage by clouds and fading caused by atmospheric turbulence in addition to complexity of on‐board and on‐ground processing. The channel models are then used to dimension the ground segment towards ensuring a given availability percentage (e.g., 99.9%). The channel model and payload complexity further influence the choice of link layer techniques used for counteracting fading due to atmospheric turbulence in the absence of blockage. An elaborate end‐to‐end simulator incorporating the proposed channel models capturing the nuances of various processing blocks like optical‐electrical conversion is developed. The system performance results provide interesting insights and a framework for assessing the feasibility and advantages of optical feeder links in VHTS systems

    Multibeam Joint Processing in Satellite Communications

    Get PDF
    Cooperative Satellite Communications (SatComs) involve multi-antenna satellites enabled for the joint transmission and reception of signals. This joint processing of baseband signals is realized amongst the distinct but interconnected antennas. Advanced signal processing techniques –namely precoding and Multiuser Detection (MUD)– are herein examined in the multibeam satellite context. The aim of this thesis is to establish the prominence of such methods in the next generation of broadband satellite networks. To this end, two approaches are followed. On one hand, the performance of the well established and theoretically concrete MUD is analysed over the satellite environments. On the other, optimal signal processing designs are developed and evaluated for the forward link. In more detail, the present dissertation begins by introducing the topic of multibeam joint processing. Thus, the most significant practical constraints that hinder the application of advanced interference mitigation techniques in satellite networks are identified and discussed. Prior to presenting the contributions of this work, the multi-antenna joint processing problem is formulated using the generic Multiuser (MU) Multiple InputMultiple Output (MIMO) baseband signal model. This model is also extended to apply in the SatComs context. A detailed presentation of the related work, starting from a generic signal processing perspective and then focusing on the SatComs field, is then given. With this review, the main open research topics are identified. Following the comprehensive literature review, the first contribution of this work, is presented. This involves the performance evaluation of MUD in the Return Link (RL) of multiuser multibeam SatComs systems. Novel, analytical expressions are derived to describe the information theoretic channel capacity as well as the performance of practical receivers over realistic satellite channels. Based on the derived formulas, significant insights for the design of the RL of next generation cooperative satellite systems are provided. In the remaining of this thesis, the focus is set on the Forward Link (FL) of multibeam SatComs, where precoding, combined with aggressive frequency reuse configurations, are proposed to enhance the offered throughput. In this context, the alleviation of practical constraints imposed by the satellite channel is the main research challenge. Focusing on the rigid framing structure of the legacy SatCom standards, the fundamental frame-based precoding problem is examined. Based on the necessity to serve multiple users by a single transmission, the connection of the frame-based precoding and the fundamental signal processing problem of physical layer multigroup multicasting is established. In this framework and to account for the power limitations imposed by a dedicated High Power Amplifier (HPA) per transmit element, a novel solution for multigroup multicasting under Per Anntenna Constraints (PACs) is derived. Therefore, the gains offered by multigroup multicasting in frame-based systems are quantified over an accurate simulation setting. Finally, advanced multicast and interference aware scheduling algorithms are proposed to glean significant gains in the rich multiuser satellite environment. The thesis concludes with the main research findings and the identification of new research challenges, which will pave the way for the deployment of cooperative multibeam satellite systems

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    corecore