17 research outputs found

    Protecting H.264/AVC Data-Partitioned Video Streams over Broadband WiMAX

    Get PDF
    Broadband wireless technology, though aimed at video services, also poses a potential threat to video services, as wireless channels are prone to error bursts. In this paper, an adaptive, application-layer Forward Error Correction (FEC) scheme protects H.264/AVC data-partitioned video. Data partitioning is the division of a compressed video stream into partitions of differing decoding importance. The paper determines whether equal error protection (EEP) through FEC of all partition types or unequal error protection (UEP) of the more important partition type is preferable. The paper finds that, though UEP offers a small reduction in bitrate, if EEP is employed, there are significant gains (several dBs) in video quality. Overhead from using EEP rather than UEP was found to be around 1% of the overall bitrate. Given that data partitioning already reduces errors through packet size reduction and differentiation of coding data, EEP with data partitioning is a practical means of protecting user-based video streaming. The gain from employing EEP is shown to be higher quality video to the user, which will result in a greater take-up of video services. The results have implications for other forms of prioritized video streaming

    ๋ฌด์„  ํ†ต์‹  ๋„คํŠธ์›Œํฌ ํ™˜๊ฒฝ์—์„œ์˜ ํšจ๊ณผ์ ์ธ ๋น„๋””์˜ค ์ŠคํŠธ๋ฆฌ๋ฐ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ์ •๋ณด๊ณตํ•™๋ถ€, 2013. 8. ์ตœ์„ฑํ˜„.์˜ค๋Š˜๋‚  ๋ฌด์„  ๋„คํŠธ์›Œํฌ ํ†ต์‹  ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์ธํ•ด ๊ณ ํ’ˆ์งˆ์˜ ๋น„๋””์˜ค ์ŠคํŠธ๋ฆฌ๋ฐ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ์ƒˆ๋กœ์šด 60~GHz ๊ด‘๋Œ€์—ญ ๊ณ ์† ๋ฌด์„  ํ†ต์‹  ๊ธฐ์ˆ ์€ ๊ธฐ์กด์˜ ๋ฌด์„  ํ†ต์‹  ๊ธฐ์ˆ ์—์„œ๋Š” ๋ถˆ๊ฐ€๋Šฅํ–ˆ๋˜, ๊ณ ํ’ˆ์งˆ์˜ ๋ฌด์••์ถ• ๋น„๋””์˜ค ์ŠคํŠธ๋ฆฌ๋ฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ œํ•œ๋œ ๋ฌด์„  ์ž์› ํ™˜๊ฒฝ์—์„œ ๊ณ ํ’ˆ์งˆ์˜ ๋น„๋””์˜ค ์„œ๋น„์Šค๋ฅผ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ์–ด์ง„ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ ์ ์ ˆํ•œ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๊ธฐ์ˆ ์„ ์„ ํƒํ•˜๋Š” ํšจ์œจ์ ์ธ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๋น„๋””์˜ค ์ŠคํŠธ๋ฆฌ๋ฐ์˜ ํ’ˆ์งˆ์„ ์ˆ˜์น˜๋กœ ํ‰๊ฐ€ํ•˜๋Š” ePSNR์„ ์ •์˜ํ•˜๊ณ , ๋ถˆํ‰๋“ฑ ์˜ค๋ฅ˜ ๋ณดํ˜ธ ๊ธฐ๋ฒ•(UEP)์„ ์ถ”๊ฐ€๋กœ ๋„์ž…ํ•˜์—ฌ ๋ณด๋‹ค ์„ธ๋ฐ€ํ•œ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์„ ๊ฐ€๋Šฅ์ผ€ ํ•œ๋‹ค. ์ •์˜ํ•œ ePSNR์„ ๊ธฐ๋ฐ˜์œผ๋กœ (1) ์ฃผ์–ด์ง„ ๋ฌด์„  ์ž์›์—์„œ ๋น„๋””์˜ค ํ’ˆ์งˆ์„ ์ตœ๋Œ€ํ™”, ํ˜น์€ (2) ๋ชฉํ‘œ ๋น„๋””์˜ค ํ’ˆ์งˆ์„ ๋งŒ์กฑํ•˜๋Š” ๋ฌด์„  ์ž์› ์‚ฌ์šฉ์„ ์ตœ์†Œํ™”, ํ•˜๋Š” ๋‘๊ฐ€์ง€ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ์ •์˜ํ•œ ePSNR์ด ๋น„๋””์˜ค ํ’ˆ์งˆ์„ ์ž˜ ํ‘œํ˜„ํ•˜๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ œ์•ˆํ•œ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•๋“ค์ด ๋น„๋””์˜ค ์ŠคํŠธ๋ฆฌ๋ฐ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•œ ์ ์ ˆํ•œ ํ’ˆ์งˆ์„ ์ œ๊ณตํ•˜๋ฉด์„œ, ๋™์‹œ์— ์ž์› ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํ•œํŽธ, ์ˆœ๋ฐฉํ–ฅ ์˜ค๋ฅ˜ ์ •์ • ๊ธฐ๋ฒ•(FEC)์€ ๋ฌด์„ ๋žœ ํ™˜๊ฒฝ์—์„œ ๊ณ ํ’ˆ์งˆ์˜ ์‹ ๋ขฐ์„ฑ์žˆ๋Š” ๋น„๋””์˜ค ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ๋ฅผ ์ง€์›ํ•œ๋‹ค. ๋ฌด์„ ๋žœ ํ™˜๊ฒฝ์—์„œ ๋ณต์ˆ˜๊ฐœ์˜ ์•ก์„ธ์Šคํฌ์ธํŠธ(AP)๊ฐ„์˜ ์กฐ์ •์„ ํ†ตํ•œ ์‹ ๋ขฐ์„ฑ์žˆ๋Š” ๋น„๋””์˜ค ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณต์ˆ˜๊ฐœ์˜ AP๊ฐ„์˜ ์กฐ์ •์„ ํ†ตํ•ด ๊ฐ๊ฐ์˜ AP๋“ค์ด (1) ์™„์ „ํžˆ ์„œ๋กœ ๋‹ค๋ฅธ, ํ˜น์€ (2) ๋ถ€๋ถ„์ ์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ, ์ธ์ฝ”๋”ฉ๋œ ํŒจํ‚ท๋“ค์„ ์ „์†กํ•˜๊ฒŒ ํ•˜์—ฌ, ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„์  ๋‹ค์–‘์„ฑ์„ ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์œ ์ €์—๊ฒŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ถ”๊ฐ€๋กœ, ์ œํ•œ๋œ ๋ฌด์„  ์ž์›์„ ๋ณด๋‹ค ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด, ์ˆœ๋ฐฉํ–ฅ ์˜ค๋ฅ˜ ์ •์ • ๊ธฐ๋ฒ•์˜ ์ฝ”๋”ฉ ๋น„์œจ ์ ์‘ ๊ธฐ๋ฒ•์„ ์œ„ํ•œ ์ž์› ํ• ๋‹น ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, FEC ๋””์ฝ”๋”ฉ ํ›„์˜ ๋น„๋””์˜ค ํŒจํ‚ท์˜ ์ „์†ก์œจ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค์˜ ์šฐ์ˆ˜์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๋ฌด์„  ์ฑ„๋„ ์˜ค๋ฅ˜๋กœ ์ธํ•ด ์ „์†ก ์‹คํŒจ๊ฐ€ ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๋ฌด์„ ๋žœ ํ‘œ์ค€์—์„œ๋Š” ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ํ™˜๊ฒฝ์—์„œ ์ž๋™ ๋ฐ˜๋ณต ์š”์ฒญ ๊ธฐ๋ฒ•(ARQ)์„ ํ†ตํ•œ ์†์‹ค ์กฐ์ • ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š์•˜๋‹ค. ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก์˜ ๋น„์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ž๋™ ๋ฐ˜๋ณต ์š”์ฒญ ๊ธฐ๋ฒ•(ARQ)๊ณผ ์ˆœ๋ฐฉํ–ฅ ์˜ค๋ฅ˜ ์ •์ • ๊ธฐ๋ฒ•(FEC)๋ฅผ ํ•จ๊ป˜ ๊ณ ๋ คํ•œ ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก์„ ์œ„ํ•œ ํ”ผ๋“œ๋ฐฑ ๊ตํ™˜์˜ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋ณต์ˆ˜๊ฐœ์˜ ํšจ์œจ์ ์ธ ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•œ ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฒ•์€ ์•ก์„ธ์Šคํฌ์ธํŠธ(AP)๊ฐ€ ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์œ ์ €๋“ค์˜ ์†์‹ค๋œ ํŒจํ‚ท๋“ค์˜ ๋ณต์›์„ ์œ„ํ•ด ํ•„์š”ํ•œ ํŒจ๋ฆฌํ‹ฐ(parity) ํŒจํ‚ท์˜ ๊ฐœ์ˆ˜๋ฅผ ์‰ฝ๊ฒŒ ์•Œ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ํ”ผ๋“œ๋ฐฑ ๊ฐ„์˜ ์ถฉ๋Œ์„ ๊ฐ์•ˆํ•œ ์˜๋„์ ์ธ ๋™์‹œ ์ „์†ก์„ ํ†ตํ•ด ํ”ผ๋“œ๋ฐฑ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ถ”๊ฐ€๋กœ, ํšจ์œจ์ ์ธ ํ”ผ๋“œ๋ฐฑ ํ”„๋กœํ† ์ฝœ์„ ํ™œ์šฉํ•˜์—ฌ, ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๊ธฐ๋ฒ•(MCS)์˜ ํ์‡„์  ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋ฐ˜์˜ ๋ฌผ๋ฆฌ ์ „์†ก ์†๋„ ์ ์‘ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์„ฑ๋Šฅ ๊ฒ€์ฆ์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค์ด ํšจ์œจ์ ์œผ๋กœ ํ”ผ๋“œ๋ฐฑ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ๋™์‹œ์— ์‹ ๋ขฐ์„ฑ์žˆ๋Š” ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก์„ ๋ณด์žฅํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.Today, along with the rapid growth of the network performance, the demand for high-quality video streaming services has greatly increased. The emerging 60 GHz multi-Gbps wireless technology enables the streaming of high-quality uncompressed video, which was not possible with other existing wireless technologies. To support such high quality video with limited wireless resources, an efficient link adaptation policy, which selects the proper Modulation and Coding Scheme (MCS) for a given channel environment, is essential. We introduce a new metric, called expected Peak Signal-to-Noise Ratio (ePSNR), to numerically estimate the video streaming quality, and additionally adopt Unequal Error Protection (UEP) schemes that enable flexible link adaptation. Using the ePSNR as a criterion, we propose two link adaptation policies with different objectives. The proposed link adaptation policies attempt to (1) maximize the video quality for given wireless resources, or (2) minimize the required wireless resources while meeting the video quality. Our extensive simulation results demonstrate that the introduced variable, i.e., ePSNR, well represents the level of video quality. It is also shown that the proposed link adaptation policies can enhance the resource efficiency while achieving acceptable quality of the video streaming. Meanwhile, Forward Error Correction (FEC) can be exploited to realize reliable video multicast over Wi-Fi with high video quality. We propose reliable video multicast over Wi-Fi networks with coordinated multiple Access Points (APs) to enhance video quality. By coordinating multiple APs, each AP can transmit (1) entirely different or (2) partially different FEC-encoded packets so that a multicast receiver can benefit from both spatial and time diversities. The proposed scheme can enlarge the satisfactory video multicast region by exploiting the multi-AP diversity, thus serving more multicast receivers located at cell edge with satisfactory video quality. We propose a resource-allocation algorithm for FEC code rate adaptation, utilizing the limited wireless resource more efficiently while enhancing video quality. We also introduce the method for estimating the video packet delivery ratio after FEC decoding. The effectiveness of the proposed schemes is evaluated via extensive simulation and experimentation. The proposed schemes are observed to enhance the ratio of satisfied users by up to 37.1% compared with the conventional single AP multicast scheme. The multicast transmission is inherently unreliable due to the transmission failures caused by wireless channel errors, however, the error control with Automatic Repeat reQuest (ARQ) is not provided for the multicast transmission in legacy IEEE 802.11 standard. To overcome the unreliability of multicast transmission, finally, we propose the reliable multicast protocols considering both ARQ and packet-level FEC together. For the proposed reliable multicast protocol, to reduce the overheads of feedback messages while providing the reliable multicast service, the multiple efficient feedback protocols, i.e., Idle-time-based feedback, Slot-based feedback, Flash-based feedback, and Busy-time-based feedback, are proposed. The proposed feedback protocols let the AP know easily the number of requiring parity frames of the worst user(s) for the recovery of the lost packets. The feedback overheads can be reduced by intending the concurrent transmissions, which makes the collisions, between feedback messages. In addition, utilizing the efficient feedback protocols, we propose the PHY rate adaptation based on the close-loop MCS feedback in multicast transmissions. From the performance evaluations, the proposed protocols can efficiently reduce the feedback overheads, while the reliable multicast transmissions are guaranteed.1 Introduction 1 1.1 Video Streaming over Wireless Networks 1 1.1.1 Uncompressed Video Streaming over 60 GHz band 2 1.1.2 Video Multicast over IEEE 802.11 WLAN 3 1.2 Overview of Existing Approaches 5 1.2.1 Link Adaptation over Wireless Networks 5 1.2.2 Video Streaming over IEEE 802.11 WLAN 6 1.2.3 Reliable Multicast over IEEE 802.11 WLAN 8 1.3 Main Contributions 9 1.4 Organization of the Dissertation 11 2 Link Adaptation for High-Quality Uncompressed Video Streaming in 60 GHz Wireless Networks 12 2.1 Introduction 12 2.2 ECMA-387 and Wireless HDMI 17 2.2.1 ECMA-387 18 2.2.2 Wireless HDMI (HDMI PAL) 21 2.2.3 UEP Operations 22 2.2.4 ACK Transmissions for Video Streaming 23 2.2.5 Latency of Compressed and Uncompressed Video Streaming 24 2.3 ePSNR-Based Link Adaptation Policies 25 2.3.1 ePSNR 28 2.3.2 PSNR-based Link Adaptation 30 2.4 Performance Evaluation 33 2.4.1 Evaluation of ePSNR 34 2.4.2 Performance of Link Adaptation 40 2.5 Summary 45 3 Reliable Video Multicast over Wi-Fi Networks with Coordinated Multiple APs 47 3.1 Introduction 47 3.2 System Environments 50 3.2.1 Time-Slotted Multicast 50 3.2.2 FEC Coding Schemes 52 3.3 Reliable Video Multicast with Coordinated Multiple APs 52 3.3.1 Proposed Video Multicast 52 3.3.2 Video Multicast Procedure 55 3.4 FEC Code Rate Adaptation 58 3.4.1 Estimation of Delivery Ratio 59 3.4.2 Greedy FEC Code Rate Adaptation 61 3.5 Performance Evaluation 63 3.5.1 Raptor Code Performance 64 3.5.2 Simulation Results: No Fading 66 3.5.3 Simulation Results: Fading Channel 69 3.5.4 Simulation Results: Code Rate Adaptation 70 3.5.5 Experimental Results 74 3.5.6 Prototype Implementation 76 3.6 Summary 79 4 Reliable Video Multicast with Efficient Feedback over Wi-Fi 81 4.1 Introduction 81 4.2 Motivation 85 4.3 Proposed Feedback Protocols for Reliable Multicast 87 4.3.1 Idle-time-based Feedback 88 4.3.2 Slot-based Feedback 89 4.3.3 Flash-based Feedback 91 4.3.4 Busy-time-based Feedback 92 4.4 PHY Rate Adaptation in Multicast Transmission 93 4.5 Performance Evaluation 96 4.5.1 Performance evaluation considering feedback error 104 4.6 Summary 109 5 Conclusion and Future Work 110 5.1 Research Contributions 110 5.2 Future Research Directions 111 Abstract (In Korean) 121Docto

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel

    Collaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks

    Get PDF
    Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such systems is the availability of high-speed and robust communication links. Unfortunately, communications over wireless channels inherently suffer from a number of fundamental physical limitations, such as multipath fading, scarce radio spectrum, and limited battery power supply for mobile devices. Cooperative diversity (CD) technology is a promising solution for future wireless communication systems to achieve broader coverage and to mitigate wireless channelsโ€™ impairments without the need to use high power at the transmitter. In general, cooperative relaying systems have a source node multicasting a message to a number of cooperative relays, which in turn resend a processed version message to an intended destination node. The destination node combines the signal received from the relays, and takes into account the sourceโ€™s original signal to decode the message. The CD communication systems exploit two fundamental features of the wireless medium: its broadcast nature and its ability to achieve diversity through independent channels. A variety of relaying protocols have been considered and utilized in cooperative wireless networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies the received signal prior to retransmission. In the DAF mode, the relay fully decodes the received signal, re-encodes and forwards it to the destination. Due to the retransmission without decoding, AAF has the shortcoming that noise accumulated in the received signal is amplified at the transmission. DAF suffers from decoding errors that can lead to severe error propagation. To further enhance the quality of service (QoS) of CD communication systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if the destination requires an ARQ retransmission, it could come from one of relays rather than the source node. This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP). Focusing on the HARQ as a central theme, we start by introducing the concept of ARP. Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF and DAF), and their operations, including channel access between the source and relay, the feedback scheme, and the combining methods at the receivers. To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate (FER) and throughput performance over a quasi-static fading channel. We can compare these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect distributed turbo codes (DTC), for which correct decoding is always assumed at the relay (HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always performs better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the channel between the source and relay increases, the performance of the proposed HARQ-ARP scheme approaches that of the HARQ-perfect DTC scheme

    GRACE: Loss-Resilient Real-Time Video through Neural Codecs

    Full text link
    In real-time video communication, retransmitting lost packets over high-latency networks is not viable due to strict latency requirements. To counter packet losses without retransmission, two primary strategies are employed -- encoder-based forward error correction (FEC) and decoder-based error concealment. The former encodes data with redundancy before transmission, yet determining the optimal redundancy level in advance proves challenging. The latter reconstructs video from partially received frames, but dividing a frame into independently coded partitions inherently compromises compression efficiency, and the lost information cannot be effectively recovered by the decoder without adapting the encoder. We present a loss-resilient real-time video system called GRACE, which preserves the user's quality of experience (QoE) across a wide range of packet losses through a new neural video codec. Central to GRACE's enhanced loss resilience is its joint training of the neural encoder and decoder under a spectrum of simulated packet losses. In lossless scenarios, GRACE achieves video quality on par with conventional codecs (e.g., H.265). As the loss rate escalates, GRACE exhibits a more graceful, less pronounced decline in quality, consistently outperforming other loss-resilient schemes. Through extensive evaluation on various videos and real network traces, we demonstrate that GRACE reduces undecodable frames by 95% and stall duration by 90% compared with FEC, while markedly boosting video quality over error concealment methods. In a user study with 240 crowdsourced participants and 960 subjective ratings, GRACE registers a 38% higher mean opinion score (MOS) than other baselines

    Video transport optimization techniques design and evaluation for next generation cellular networks

    Get PDF
    Video is foreseen to be the dominant type of data traffic in the Internet. This vision is supported by a number of studies which forecast that video traffic will drastically increase in the following years, surpassing Peer-to-Peer traffic in volume already in the current year. Current infrastructures are not prepared to deal with this traffic increase. The current Internet, and in particular the mobile Internet, was not designed with video requirements in mind and, as a consequence, its architecture is very inefficient for handling this volume of video traffic. When a large part of traffic is associated to multimedia entertainment, most of the mobile infrastructure is used in a very inefficient way to provide such a simple service, thereby saturating the whole cellular network, and leading to perceived quality levels that are not adequate to support widespread end user acceptance. The main goal of the research activity in this thesis is to evolve the mobile Internet architecture for efficient video traffic support. As video is expected to represent the majority of the traffic, the future architecture should efficiently support the requirements of this data type, and specific enhancements for video should be introduced at all layers of the protocol stack where needed. These enhancements need to cater for improved quality of experience, improved reliability in a mobile world (anywhere, anytime), lower exploitation cost, and increased flexibility. In this thesis a set of video delivery mechanisms are designed to optimize the video transmission at different layers of the protocol stack and at different levels of the cellular network. Upon the architectural choices, resource allocation schemes are implemented to support a range of video applications, which cover video broadcast/multicast streaming, video on demand, real-time streaming, video progressive download and video upstreaming. By means of simulation, the benefits of the designed mechanisms in terms of perceived video quality and network resource saving are shown and compared to existing solutions. Furthermore, selected modules are implemented in a real testbed and some experimental results are provided to support the development of such transport mechanisms in practice

    VLSI decoding architectures: flexibility, robustness and performance

    Get PDF
    Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of the power, area and speed gap they might present with respect to dedicated solutions. Additional studies have been carried out within the field of increased code performance and of decoder resiliency to hardware errors. The first chapter regroups several main contributions in the design and implementation of flexible channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as an interconnection network for a partially parallel LDPC decoder. A best-fit NoC architecture is designed and a complete multi-standard turbo/LDPC decoder is designed and implemented. Every time the code is changed, the decoder must be reconfigured. A number of variables influence the duration of the reconfiguration process, starting from the involved codes down to decoder design choices. These are taken in account in the flexible decoder designed, and novel traffic reduction and optimization methods are then implemented. In the second chapter a study on the early stopping of iterations for LDPC decoders is presented. The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding algorithm. We propose an innovative multi-standard early stopping criterion for LDPC decoders that observes the evolution of simple metrics and relies on on-the-fly threshold computation. Its effectiveness is evaluated against existing techniques both in terms of saved iterations and, after implementation, in terms of actual energy saving. The third chapter portrays a study on the resilience of LDPC decoders under the effect of memory errors. Given that the purpose of channel decoders is to correct errors, LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults. This characteristic, together with the soft nature of the stored values, results in LDPC decoders being affected differently according to the meaning of the wrong bits: ad-hoc error protection techniques, like the Unequal Error Protection devised in this chapter, can consequently be applied to different bits according to their significance. In the fourth chapter the serial concatenation of LDPC and turbo codes is presented. The concatenated FEC targets very high error correction capabilities, joining the performance of turbo codes at low SNR with that of LDPC codes at high SNR, and outperforming both current deep-space FEC schemes and concatenation-based FECs. A unified decoder for the concatenated scheme is subsequently propose
    corecore