577 research outputs found

    Novel computed tomographic chest metrics to detect pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis of pulmonary hypertension (PH) can potentially improve survival and quality of life. Detecting PH using echocardiography is often insensitive in subjects with lung fibrosis or hyperinflation. Right heart catheterization (RHC) for the diagnosis of PH adds risk and expense due to its invasive nature. Pre-defined measurements utilizing computed tomography (CT) of the chest may be an alternative non-invasive method of detecting PH.</p> <p>Methods</p> <p>This study retrospectively reviewed 101 acutely hospitalized inpatients with heterogeneous diagnoses, who consecutively underwent CT chest and RHC during the same admission. Two separate teams, each consisting of a radiologist and pulmonologist, blinded to clinical and RHC data, individually reviewed the chest CT's.</p> <p>Results</p> <p>Multiple regression analyses controlling for age, sex, ascending aortic diameter, body surface area, thoracic diameter and pulmonary wedge pressure showed that a main pulmonary artery (PA) diameter ≥29 mm (odds ratio (OR) = 4.8), right descending PA diameter ≥19 mm (OR = 7.0), true right descending PA diameter ≥ 16 mm (OR = 4.1), true left descending PA diameter ≥ 21 mm (OR = 15.5), right ventricular (RV) free wall ≥ 6 mm (OR = 30.5), RV wall/left ventricular (LV) wall ratio ≥0.32 (OR = 8.8), RV/LV lumen ratio ≥1.28 (OR = 28.8), main PA/ascending aorta ratio ≥0.84 (OR = 6.0) and main PA/descending aorta ratio ≥ 1.29 (OR = 5.7) were significant predictors of PH in this population of hospitalized patients.</p> <p>Conclusion</p> <p>This combination of easily measured CT-based metrics may, upon confirmatory studies, aid in the non-invasive detection of PH and hence in the determination of RHC candidacy in acutely hospitalized patients.</p

    Three-Dimensional Computed Tomography Measurements of Pulmonary Artery Volumes: Development and Application

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major contributor to hospitalizations and healthcare costs in North America. While the hallmark of COPD is airflow limitation, it is also associated with abnormalities of the cardiovascular system. Enlargement of the pulmonary artery (PA) is a morphological marker of pulmonary hypertension, and was previously shown to predict acute exacerbations using a one-dimensional (1D) diameter measurement of the main PA. We hypothesized that a three-dimensional (3D) quantification of PA size would be more sensitive than 1D methods and encompass morphological changes along the entire central PA. Hence, we developed a 3D measurement of the main (MPA), left (LPA) and right (RPA) pulmonary arteries as well as total PA volume (TPA) volume from thoracic x-ray computed tomography (CT) imaging. Three observers performed five repeated measurements for 15 ex-smokers. There was a strong agreement (r2 = 0.76) between PA volume and PA diameter measurements, which was used as the gold standard. Intra-rater measurement reproducibility was evaluated by calculating the coefficient of variation (CV) using five rounds of measurements and revealed excellent agreement (CV \u3c 8%) between measurements. Inter-rater measurement variability was also evaluated using intraclass correlation analysis which revealed strong agreement (ICCMPA=0.98) between observers. In an application of this tool, we sought to explore the relationship between PA volumes and lung structure-function as determined by spirometry, hyperpolarized helium-3 magnetic resonance imaging (MRI) and CT in 124 ex-smokers, with (n=68) and without (n=56) airflow limitation, and in a control group of 35 healthy never-smokers. We observed significantly greater MPA (p=.014), RPA (p=.001) and TPA (p=.003) volumes in ex-smokers with airflow limitation when compared to ex-smokers without airflow limitation. We also observed significantly greater PA volumes in both ex-smoker subgroups when compared with the never-smoker control group. Modest but significant correlations were observed for PA volumes and measurements of lung structure and function. However, this was not observed when analyzing ex-smokers with airflow limitation alone, suggesting that pulmonary artery enlargement may occur secondary to COPD in our subject group. Multivariate zero-inflated Poisson regression analysis revealed TPA volume to be a significant (p=.03) predictor of acute exacerbations of COPD. In conclusion, we developed a reproducible technique for quantifying the volume of the PA. We showed that pulmonary artery enlargement may be secondary to COPD in our subject group. We also showed that total pulmonary artery volume was a significant predictor of COPD exacerbations and could be considered as a biomarker for predicting the occurrence of exacerbation events. Automated measurements of pulmonary artery abnormalities once developed, can be used to further evaluate healthy volunteers and patients with COPD

    Functional imaging for assessing regional lung ventilation in preclinical and clinical research

    Get PDF
    Dynamic heterogeneity in lung ventilation is an important measure of pulmonary function and may be characteristic of early pulmonary disease. While standard indices like spirometry, body plethysmography, and blood gases have been utilized to assess lung function, they do not provide adequate information on regional ventilatory distribution nor function assessments of ventilation during the respiratory cycle. Emerging technologies such as xenon CT, volumetric CT, functional MRI and X-ray velocimetry can assess regional ventilation using non-invasive radiographic methods that may complement current methods of assessing lung function. As a supplement to current modalities of pulmonary function assessment, functional lung imaging has the potential to identify respiratory disease phenotypes with distinct natural histories. Moreover, these novel technologies may offer an optimal strategy to evaluate the effectiveness of novel therapies and therapies targeting localized small airways disease in preclinical and clinical research. In this review, we aim to discuss the features of functional lung imaging, as well as its potential application and limitations to adoption in research.</p

    Quantitative CT analysis in ILD and use of artificial intelligence on imaging of ILD

    Get PDF
    Advances in computer technology over the past decade, particularly in the field of medical image analysis, have permitted the identification, characterisation and quantitation of abnormalities that can be used to diagnose disease or determine disease severity. On CT imaging performed in patients with ILD, deep-learning computer algorithms now demonstrate comparable performance with trained observers in the identification of a UIP pattern, which is associated with a poor prognosis in several fibrosing ILDs. Computer tools that quantify individual voxel-level CT features have also come of age and can predict mortality with greater power than visual CT analysis scores. As these tools become more established, they have the potential to improve the sensitivity with which minor degrees of disease progression are identified. Currently, PFTs are the gold standard measure used to assess clinical deterioration. However, the variation associated with pulmonary function measurements may mask the presence of small but genuine functional decline, which in the future could be confirmed by computer tools. The current chapter will describe the latest advances in quantitative CT analysis and deep learning as related to ILDs and suggest potential future directions for this rapidly advancing field

    Utility of Computed Tomographic Angiography for Pulmonary Hypertension Assessment in a Cohort of West Highland White Terriers With or Without Canine Idiopathic Pulmonary Fibrosis

    Get PDF
    West Highland white terriers (WHWTs) affected with canine idiopathic pulmonary fibrosis (CIPF) are at risk of developing precapillary pulmonary hypertension (PH). In humans, thoracic computed tomography angiography (CTA) is commonly used to diagnose and monitor patients with lower airway diseases. In such patients, CTA helps to identify comorbidities, such as PH, that could negatively impact prognosis. Diameter of the pulmonary trunk (PT), pulmonary trunk-to-aorta ratio (PT/Ao), and right ventricle-to-left ventricle ratio (RV/LV) are CTA parameters commonly used to assess the presence of PH. Pulmonary vein-to-right pulmonary artery ratio (PV/PA) is a new echocardiographic parameter that can be used in dogs to diagnose PH. The primary aim of this study was to evaluate the use of various CTA parameters to diagnose PH. An additional aim was to evaluate the correlation of RV/LV measurements between different CTA planes. CTA and echocardiography were prospectively performed on a total of 47 WHWTs; 22 affected with CIPF and 25 presumed healthy control dogs. Dogs were considered to have PH if pulmonary vein-to-right pulmonary artery ratio (PV/PA) measured on 2D-mode echocardiography was less than to 0.7. WHWTs affected with CIPF had higher PT/Ao compared with control patients. In WHWTs affected with CIPF, PT size was larger in dogs with PH (15.4 mm) compared with dogs without PH (13 mm, p = 0.003). A cutoff value of 13.8 mm predicted PH in WHWTs affected with CIPF with a sensitivity of 90% and a specificity of 87% (AUC = 0.93). High correlations were observed between the different CTA planes of RV/LV. Results suggest that diameter of the PT measured by CTA can be used to diagnose PH in WHWTs with CIPF

    Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging

    Get PDF
    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image-based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review, we will focus on two of them; X-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method, we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge

    Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD

    Get PDF

    Association between ratio for diameters of pulmonary artery to ascending aorta bifurcation in chest CT scan and number of involved vessels in coronary angiography

    Get PDF
    Objective: Coronary artery disease (CAD) is an important cause of mortality and morbidity, therefore, recognizing its severity and related factors is important. This study was performed to evaluate the association between ratio for diameters of pulmonary artery to ascending aorta bifurcation in chest CT scan and number of involved vessels in coronary angiography. In this observational cross-sectional comparative study, 110 patients who were under coronary angiography in Firoozgar Hospital in 2017 were enrolled, and the association between ratio for diameters of pulmonary artery to ascending aorta bifurcation in their chest CT scan and number of involved vessels in angiography were assessed. Results: In this study, number of involved vessels in angiography was related to PA/Ao ratio (P = 0.001) and further vessels were accompanied with higher ratio. It may be concluded that, a higher ratio for diameters of pulmonary artery to ascending aorta bifurcation in chest CT scan is related to higher number of involved vessels in coronary angiography, and it may have a predictive role. © 2021, The Author(s)
    corecore