63 research outputs found

    Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese

    Full text link
    Mandarin Chinese is characterized by being a tonal language; the pitch (or F0F_0) of its utterances carries considerable linguistic information. However, speech samples from different individuals are subject to changes in amplitude and phase which must be accounted for in any analysis which attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase and duration is presented which combines elements from Functional Data Analysis, Compositional Data Analysis and Linear Mixed Effects Models. By decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis, a joint multivariate mixed effect model can be formulated which gives insights into the relationship between the different modes of variation as well as their dependence on linguistic and non-linguistic covariates. The model is applied to the COSPRO-1 data set, a comprehensive database of spoken Taiwanese Mandarin, containing approximately 50 thousand phonetically diverse sample F0F_0 contours (syllables), and reveals that phonetic information is jointly carried by both amplitude and phase variation.Comment: 49 pages, 13 figures, small changes to discussio

    Phase-Distortion-Robust Voice-Source Analysis

    Get PDF
    This work concerns itself with the analysis of voiced speech signals, in particular the analysis of the glottal source signal. Following the source-filter theory of speech, the glottal signal is produced by the vibratory behaviour of the vocal folds and is modulated by the resonances of the vocal tract and radiation characteristic of the lips to form the speech signal. As it is thought that the glottal source signal contributes much of the non-linguistic and prosodical information to speech, it is useful to develop techniques which can estimate and parameterise this signal accurately. Because of vocal tract modulation, estimating the glottal source waveform from the speech signal is a blind deconvolution problem which necessarily makes assumptions about the characteristics of both the glottal source and vocal tract. A common assumption is that the glottal signal and/or vocal tract can be approximated by a parametric model. Other assumptions include the causality of the speech signal: the vocal tract is assumed to be a minimum phase system while the glottal source is assumed to exhibit mixed phase characteristics. However, as the literature review within this thesis will show, the error criteria utilised to determine the parameters are not robust to the conditions under which the speech signal is recorded, and are particularly degraded in the common scenario where low frequency phase distortion is introduced. Those that are robust to this type of distortion are not well suited to the analysis of real-world signals. This research proposes a voice-source estimation and parameterisation technique, called the Power-spectrum-based determination of the Rd parameter (PowRd) method. Illustrated by theory and demonstrated by experiment, the new technique is robust to the time placement of the analysis frame and phase issues that are generally encountered during recording. The method assumes that the derivative glottal flow signal is approximated by the transformed Liljencrants-Fant model and that the vocal tract can be represented by an all-pole filter. Unlike many existing glottal source estimation methods, the PowRd method employs a new error criterion to optimise the parameters which is also suitable to determine the optimal vocal-tract filter order. In addition to the issue of glottal source parameterisation, nonlinear phase recording conditions can also adversely affect the results of other speech processing tasks such as the estimation of the instant of glottal closure. In this thesis, a new glottal closing instant estimation algorithm is proposed which incorporates elements from the state-of-the-art techniques and is specifically designed for operation upon speech recorded under nonlinear phase conditions. The new method, called the Fundamental RESidual Search or FRESS algorithm, is shown to estimate the glottal closing instant of voiced speech with superior precision and comparable accuracy as other existing methods over a large database of real speech signals under real and simulated recording conditions. An application of the proposed glottal source parameterisation method and glottal closing instant detection algorithm is a system which can analyse and re-synthesise voiced speech signals. This thesis describes perceptual experiments which show that, iunder linear and nonlinear recording conditions, the system produces synthetic speech which is generally preferred to speech synthesised based upon a state-of-the-art timedomain- based parameterisation technique. In sum, this work represents a movement towards flexible and robust voice-source analysis, with potential for a wide range of applications including speech analysis, modification and synthesis

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    Multi-parametric source-filter separation of speech and prosodic voice restoration

    Get PDF
    In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voice features and reconstruct more natural sounding speech from pathological voices using a multi-resolution approach. Inspired from observations with respect to this approach, the necessity of a novel method for the separation of speech into voice source and articulation components emerged in order to improve the perceptive quality of the restored speech signal. This work subsequently represents the main part of this work and therefore is presented first in this thesis. The proposed method is evaluated on synthetic, physically modelled, healthy and pathological speech. A robust, separate representation of source and filter characteristics has applications in areas that go far beyond the reconstruction of alaryngeal speech. It is potentially useful for efficient speech coding, voice biometrics, emotional speech synthesis, remote and/or non-invasive voice disorder diagnosis, etc. A key aspect of the voice restoration method is the reliable separation of the speech signal into voice source and articulation for it is mostly the voice source that requires replacement or enhancement in alaryngeal speech. Observations during the evaluation of above method highlighted that this separation is insufficient with currently known methods. Therefore, the main part of this thesis is concerned with the modelling of voice and vocal tract and the estimation of the respective model parameters. Most methods for joint source filter estimation known today represent a compromise between model complexity, estimation feasibility and estimation efficiency. Typically, single-parametric models are used to represent the source for the sake of tractable optimization or multi-parametric models are estimated using inefficient grid searches over the entire parameter space. The novel method presented in this work proposes advances in the direction of efficiently estimating and fitting multi-parametric source and filter models to healthy and pathological speech signals, resulting in a more reliable estimation of voice source and especially vocal tract coefficients. In particular, the proposed method is exhibits a largely reduced bias in the estimated formant frequencies and bandwidths over a large variety of experimental conditions such as environmental noise, glottal jitter, fundamental frequency, voice types and glottal noise. The methods appears to be especially robust to environmental noise and improves the separation of deterministic voice source components from the articulation. Alaryngeal speakers often have great difficulty at producing intelligible, not to mention prosodic, speech. Despite great efforts and advances in surgical and rehabilitative techniques, currently known methods, devices and modes of speech rehabilitation leave pathological speakers with a lack in the ability to control key aspects of their voice. The proposed multiresolution approach presented at the end of this thesis provides alaryngeal speakers an intuitive manner to increase prosodic features in their speech by reconstructing a more intelligible, more natural and more prosodic voice. The proposed method is entirely non-invasive. Key prosodic cues are reconstructed and enhanced at different temporal scales by inducing additional volatility estimated from other, still intact, speech features. The restored voice source is thus controllable in an intuitive way by the alaryngeal speaker. Despite the above mentioned advantages there is also a weak point of the proposed joint source-filter estimation method to be mentioned. The proposed method exhibits a susceptibility to modelling errors of the glottal source. On the other hand, the proposed estimation framework appears to be well suited for future research on exactly this topic. A logical continuation of this work is the leverage the efficiency and reliability of the proposed method for the development of new, more accurate glottal source models

    A Silent-Speech Interface using Electro-Optical Stomatography

    Get PDF
    Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteressierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausgeschlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können. Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor, das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basierend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworterkennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwendet wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde, ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielversprechende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 191Speech technology is a major and growing industry that enriches the lives of technologically-minded people in a number of ways. Many potential users are, however, excluded: Namely, all speakers who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to communicate with a machine by a convenient speech recognition interface without the need for acoustic speech. They also can potentially provide a full replacement voice by synthesizing the intended utterances that are only silently articulated by the user. To that end, the speech movements need to be captured and mapped to either text or acoustic speech. This dissertation proposes a new Silent-Speech Interface based on a newly developed measurement technology called Electro-Optical Stomatography and a novel parametric vocal tract model to facilitate real-time speech synthesis based on the measured data. The hardware was used to conduct command word recognition studies reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was also completed. While the intelligibility of synthesized vowels was high, the intelligibility of consonants and connected speech was quite poor. Promising ways to improve the system are discussed in the outlook.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 19

    Intonation Modelling for Speech Synthesis and Emphasis Preservation

    Get PDF
    Speech-to-speech translation is a framework which recognises speech in an input language, translates it to a target language and synthesises speech in this target language. In such a system, variations in the speech signal which are inherent to natural human speech are lost, as the information goes through the different building blocks of the translation process. The work presented in this thesis addresses aspects of speech synthesis which are lost in traditional speech-to-speech translation approaches. The main research axis of this thesis is the study of prosody for speech synthesis and emphasis preservation. A first investigation of regional accents of spoken French is carried out to understand the sensitivity of native listeners with respect to accented speech synthesis. Listening tests show that standard adaptation methods for speech synthesis are not sufficient for listeners to perceive accentedness. On the other hand, combining adaptation with original prosody allows perception of accents. Addressing the need of a more suitable prosody model, a physiologically plausible intonation model is proposed. Inspired by the command-response model, it has basic components, which can be related to muscle responses to nerve impulses. These components are assumed to be a representation of muscle control of the vocal folds. A motivation for such a model is its theoretical language independence, based on the fact that humans share the same vocal apparatus. An automatic parameter extraction method which integrates a perceptually relevant measure is proposed with the model. This approach is evaluated and compared with the standard command-response model. Two corpora including sentences with emphasised words are presented, in the context of the SIWIS project. The first is a multilingual corpus with speech from multiple speaker; the second is a high quality speech synthesis oriented corpus from a professional speaker. Two broad uses of the model are evaluated. The first shows that it is difficult to predict model parameters; however the second shows that parameters can be transferred in the context of emphasis synthesis. A relation between model parameters and linguistic features such as stress and accent is demonstrated. Similar observations are made between the parameters and emphasis. Following, we investigate the extraction of atoms in emphasised speech and their transfer in neutral speech, which turns out to elicit emphasis perception. Using clustering methods, this is extended to the emphasis of other words, using linguistic context. This approach is validated by listening tests, in the case of English

    Application of generative models in speech processing tasks

    Get PDF
    Generative probabilistic and neural models of the speech signal are shown to be effective in speech synthesis and speech enhancement, where generating natural and clean speech is the goal. This thesis develops two probabilistic signal processing algorithms based on the source-filter model of speech production, and two based on neural generative models of the speech signal. They are a model-based speech enhancement algorithm with ad-hoc microphone array, called GRAB; a probabilistic generative model of speech called PAT; a neural generative F0 model called TEReTA; and a Bayesian enhancement network, call BaWN, that incorporates a neural generative model of speech, called WaveNet. PAT and TEReTA aim to develop better generative models for speech synthesis. BaWN and GRAB aim to improve the naturalness and noise robustness of speech enhancement algorithms. Probabilistic Acoustic Tube (PAT) is a probabilistic generative model for speech, whose basis is the source-filter model. The highlights of the model are threefold. First, it is among the very first works to build a complete probabilistic model for speech. Second, it has a well-designed model for the phase spectrum of speech, which has been hard to model and often neglected. Third, it models the AM-FM effects in speech, which are perceptually significant but often ignored in frame-based speech processing algorithms. Experiments show that the proposed model has good potential for a number of speech processing tasks. TEReTA generates pitch contours by incorporating a theoretical model of pitch planning, the piece-wise linear target approximation (TA) model, as the output layer of a deep recurrent neural network. It aims to model semantic variations in the F0 contour, which is challenging for existing network. By combining the TA model, TEReTA is able to memorize semantic context and capture the semantic variations. Experiments on contrastive focus verify TEReTA's ability in semantics modeling. BaWN is a neural network based algorithm for single-channel enhancement. The biggest challenges of the neural network based speech enhancement algorithm are the poor generalizability to unseen noises and unnaturalness of the output speech. By incorporating a neural generative model, WaveNet, in the Bayesian framework, where WaveNet predicts the prior for speech, and where a separate enhancement network incorporates the likelihood function, BaWN is able to achieve satisfactory generalizability and a good intelligibility score of its output, even when the noisy training set is small. GRAB is a beamforming algorithm for ad-hoc microphone arrays. The task of enhancing speech with ad-hoc microphone array is challenging because of the inaccuracy in position and interference calibration. Inspired by the source-filter model, GRAB does not rely on any position or interference calibration. Instead, it incorporates a source-filter speech model and minimizes the energy that cannot be accounted for by the model. Objective and subjective evaluations on both simulated and real-world data show that GRAB is able to suppress noise effectively while keeping the speech natural and dry. Final chapters discuss the implications of this work for future research in speech processing
    • …
    corecore