3,484 research outputs found

    Single-shot fringe pattern phase retrieval using improved period-guided bidimensional empirical mode decomposition and Hilbert transform

    Get PDF
    Fringe pattern analysis is the central aspect of numerous optical measurement methods, e.g., interferometry, fringe projection, digital holography, quantitative phase microscopy. Experimental fringe patterns always contain significant features originating from fluctuating environment, optical system and illumination quality, and the sample itself that severely affect analysis outcome. Before the stage of phase retrieval (information decoding) interferogram needs proper filtering, which minimizes the impact of mentioned issues. In this paper we propose fully automatic and adaptive fringe pattern pre-processing technique - improved period guided bidimensional empirical mode decomposition algorithm (iPGBEMD). It is based on our previous work about PGBEMD which eliminated the mode-mixing phenomenon and made the empirical mode decomposition fully adaptive. In present work we overcame key problems of original PGBEMD – we have considerably increased algorithm’s application range and shortened computation time several-fold. We proposed three solutions to the problem of erroneous decomposition for very low fringe amplitude images, which limited original PGBEMD significantly and we have chosen the best one among them after comprehensive analysis. Several acceleration methods were also proposed and merged to ensure the best results. We combined our improved pre-processing algorithm with the Hilbert Spiral Transform to receive complete, consistent, and versatile fringe pattern analysis path. Quality and effectiveness evaluation, in comparison with selected reference methods, is provided using numerical simulations and experimental fringe data

    Ab-initio transport properties of nanostructures from maximally-localized Wannier functions

    Full text link
    We present a comprehensive first-principles study of the ballistic transport properties of low dimensional nanostructures such as linear chains of atoms (Al, C) and carbon nanotubes in presence of defects. A novel approach is introduced where quantum conductance is computed from the combination of accurate plane-wave electronic structure calculations, the evaluation of the corresponding maximally-localized Wannier functions, and the calculation of transport properties by a real-space Green's function method based on the Landauer formalism. This approach is computationally very efficient, can be straightforwardly implemented as a post-processing step in a standard electronic-structure calculation, and allows to directly link the electronic transport properties of a device to the nature of the chemical bonds, providing insight onto the mechanisms that govern electron flow at the nanoscale.Comment: to be published in Phys. Rev. B (2003

    Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

    No full text
    Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, sometimes by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We review, discuss and benchmark state-of-the-art representations and relations between them, including smooth overlap of atomic positions, many-body tensor representation, and symmetry functions. For this, we use a unified mathematical framework based on many-body functions, group averaging and tensor products, and compare energy predictions for organic molecules, binary alloys and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method and hyper-parameter optimization

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    Serial-EMD: Fast Empirical Mode Decomposition Method for Multi-dimensional Signals Based on Serialization

    Get PDF
    Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amount of data puts forward higher requirements for the capability of real-time signal analysis, it is difficult for existing EMD and its variants to trade off the growth of data dimension and the speed of signal analysis. In order to decompose multi-dimensional signals at a faster speed, we present a novel signal-serialization method (serial-EMD), which concatenates multi-variate or multi-dimensional signals into a one-dimensional signal and uses various one-dimensional EMD algorithms to decompose it. To verify the effects of the proposed method, synthetic multi-variate time series, artificial 2D images with various textures and real-world facial images are tested. Compared with existing multi-EMD algorithms, the decomposition time becomes significantly reduced. In addition, the results of facial recognition with Intrinsic Mode Functions (IMFs) extracted using our method can achieve a higher accuracy than those obtained by existing multi-EMD algorithms, which demonstrates the superior performance of our method in terms of the quality of IMFs. Furthermore, this method can provide a new perspective to optimize the existing EMD algorithms, that is, transforming the structure of the input signal rather than being constrained by developing envelope computation techniques or signal decomposition methods. In summary, the study suggests that the serial-EMD technique is a highly competitive and fast alternative for multi-dimensional signal analysis.Fil: Zhang, Jin. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Marti Puig, Pere. Central University of Catalonia; EspañaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Sun, Zhe. RIKEN; JapónFil: Duan, Feng. Nankai University; ChinaFil: Sole Casals, Jordi. Central University of Catalonia; Españ
    corecore