7,308 research outputs found

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    Optically Driven PH Gradient Generator Based on Self-Assembled Proton Pumps for Activating Hydrogel Microactuators

    Get PDF
    This dissertation presents a new approach for developing a biologically inspired photo-electro-chemo-mechanical microactuator by exploiting the ion pumping characteristics of bacteriorhodopsin (bR) proton pumps and the pH sensitivity of smart hydrogels. The ultimate goal of this project is to prove the viability of integrating bR monolayer into novel actuation applications using molecular level architectures. To accomplish this, the bR proton pumps are molecularly labelled, organized, and directionally immobilized on Au-coated substrate, and then integrated with pH sensitive hydrogel. When responding to an incident light beams, the internal proton pumping mechanism is mathematically modeled for quantifying the processing of the photonic energy into electro-chemical potential. Experimental and theoretical findings indicate that the photo-electric response of the dry bR is attributed to charge displacement and recombination; whereas, the response of the aqueous bR measured is a real proton pumping mechanism. The photo-electric properties, light source conditions all have influence on the observed photo-electric response characteristics. The presented technology is proven both experimentally and analytically through simulation. Experiments are conducted using acrylic acid (AA) monomer linked to 2-hydroxyethyl methacrylate (HEMA) monomer and the developed bR monolayer forming this hybrid microactuator. The light detecting part of the actuator is the bR monolayer. In this part the incident light beams are processed in the bR proton pumps through their photo-cycle to transport protons from the cytoplasmic side to the extracellular side of the bR protein. The bR monolayer is fabricated with molecular level recognition, labelling, and adsorption leading to a novel architecture able to transport protons through a porous substrate. Once protons are transported from one side to the other side of the membrane, the concentration of the hydrogen ions is changed. The change in the hydrogen ions concentration is expected theoretically and has been proved by monitoring pH changes in the ionic solution as pH gives direct indication on the hydrogen ions concentration. The change in the pH is exploited by integrating the light detecting part of the actuator to the pH-sensitive hydrogel which acts as the actuator shell that receives the pH changes and treat it as an input signal and then process it to undergo in an electric phase transition that leads to volume transition and associated mechanical work. The generated mechanical work is exploited in microactuation techniques with interest in microfluidic valves to control the flow in the microchannels. Based on the presented work the bR monolayer shows great potential for becoming a viable biomaterial for use in optical sensing and actuation. Many industrial and biomedical applications may benefit from the presented advances in generating higher performance micro-systems

    NUMERICAL AND SCALING STUDY ON APPLICATION OF INKJET TECHNOLOGY TO AUTOMOTIVE COATING

    Get PDF
    A thorough literature review identified lack of precision control over quality of droplets generated by the currently available industrial sprayers and a growing need for higher quality droplets in the coating industry. Particularly, lack of knowledge and understanding in continuous inkjets (CIJ) and drop-on-demand (DOD) technologies is identified as significant. Motivated by these needs, this dissertation is dedicated to computational fluid dynamics (CFD) and scaling studies to improve existing inkjet technologies and develop new designs of efficient coating with single and/or multiple piezoelectric sensors to produce on-demand droplets. This dissertation study aims at developing a new DOD type coating technology, but it required understanding the effects of paint viscosity on droplet generation mechanism, an effective droplet delivery method to the coating surface, painted surface quality and control system of the DOD among others. Waterborne (WB) paints are chosen as the working liquid to identify three different DOD designs capable of creating a stream of mono-dispersed droplets. Volume-of-fluids (VOF) multiphase model explored the droplet creation process and effects of various parameters on the droplets’ quality. The law approach scaling analysis identified scaling laws to scale up these numerical results conduced for the laboratory-scale DOD to the large industrial scale inkjet nozzles

    Lead-free piezoceramics - Where to move on?

    Get PDF
    Lead-free piezoceramics aiming at replacing the market-dominant lead-based ones have been extensively searched for more than a decade worldwide. Some noteworthy outcomes such as the advent of commercial products for certain applications have been reported, but the goal, i.e., the invention of a lead-free piezocermic, the performance of which is equivalent or even superior to that of PZT-based piezoceramics, does not seem to be fulfilled yet. Nevertheless, the academic effort already seems to be culminated, waiting for a guideline to a future research direction. We believe that a driving force for a restoration of this research field needs to be found elsewhere, for example, intimate collaborations with related industries. For this to be effectively realized, it would be helpful for academic side to understand the interests and demands of the industry side as well as to provide the industry with new scientific insights that would eventually lead to new applications. Therefore, this review covers some of the issues that are to be studied further and deeper, so-to-speak, lessons from the history of piezoceramics, and some technical issues that could be useful in better understanding the industry demands. As well, the efforts made in the industry side will be briefly introduced for the academic people to catch up with the recent trends and to be guided for setting up their future research direction effectively.ope

    Volume 2 – Conference: Wednesday, March 9

    Get PDF
    10. Internationales Fluidtechnisches Kolloquium:Group 1 | 2: Novel System Structures Group 3 | 5: Pumps Group 4: Thermal Behaviour Group 6: Industrial Hydraulic

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental
    • 

    corecore