3,857 research outputs found

    Secure Equality Test Technique Using Identity-Based Signcryption for Telemedicine Systems

    Get PDF
    For telemedicine, wireless body area network (WBAN) offers enormous benefits where a patient can be remotely monitored without compromising the mobility of remote treatments. With the advent of high capacity and reliable wireless networks, WBANs are used in several remote monitoring systems, limiting the COVID-19 spread. The sensitivity of telemedicine applications mandates confidentiality and privacy requirements. In this article, we propose a secure WBAN-19 telemedicine system to overcome the pervasiveness of contagious deceases utilizing a novel aggregate identity-based signcryption scheme with an equality test feature. We demonstrate a security analysis regarding indistinguishable adaptive chosen-ciphertext attack (IND-CCA2), one-way security against adaptive chosen-ciphertext attack (OW-CCA2), and unforgeability against adaptive chosen-message attack (EUF-CMA) under the random oracle model. The security analysis of the scheme is followed by complexity evaluations where the computation cost and communication overhead are measured. The evaluation demonstrates that the proposed model is efficient and applicable in telemedicine systems with high-performance capacities

    A Review of Wireless Body Area Networks for Medical Applications

    Full text link
    Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solutions towards in-body and on-body sensor networks.Comment: 7 pages, 7 figures, and 3 tables. In V3, the manuscript is converted to LaTe

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    An Advanced Home ElderCare Service

    Get PDF
    With the increase of welfare cost all over the developed world, there is a need to resort to new technologies that could help reduce this enormous cost and provide some quality eldercare services. This paper presents a middleware-level solution that integrates monitoring and emergency detection solutions with networking solutions. The proposed system enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and provides a framework for creating and managing rescue teams willing to assist elders in case of emergency situations. A prototype of the proposed system was designed and implemented. Results were obtained from both computer simulations and a real-network testbed. These results show that the proposed system can help overcome some of the current problems and help reduce the enormous cost of eldercare service

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    eHealth and the Internet of Things

    Get PDF
    To respond to an ageing population, eHealth strategies offer significant opportunities in achieving a balanced and sustainable healthcare infrastructure. Advances in technology both at the sensor and device levels and in respect of information technology have opened up other possibilities and options. Of significance among these is what is increasingly referred to as the Internet of Things, the interconnection of physical devices to an information infrastructure. The paper therefore sets out to position the Internet of Things at the core of future developments in eHealt
    corecore