4,374 research outputs found

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University

    Distributed Low-rank Subspace Segmentation

    Full text link
    Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is provably and empirically accurate on small problems but does not scale to the massive sizes of modern vision datasets. Moreover, past work aimed at scaling up low-rank matrix factorization is not applicable to LRR given its non-decomposable constraints. In this work, we propose a novel divide-and-conquer algorithm for large-scale subspace segmentation that can cope with LRR's non-decomposable constraints and maintains LRR's strong recovery guarantees. This has immediate implications for the scalability of subspace segmentation, which we demonstrate on a benchmark face recognition dataset and in simulations. We then introduce novel applications of LRR-based subspace segmentation to large-scale semi-supervised learning for multimedia event detection, concept detection, and image tagging. In each case, we obtain state-of-the-art results and order-of-magnitude speed ups

    Fast Local Tone Mapping, Summed-Area Tables and Mesopic Vision Simulation

    Get PDF
    広島大学(Hiroshima University)博士(工学)Engineeringdoctora

    A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines

    Full text link
    Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic training of our proposed models and are able to show interesting features of unsupervised learning which could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based framework for leveraging trained RBMs as joint priors in denoising problems

    Modeling Word Burstiness Using the Dirichlet Distribution

    Get PDF
    Multinomial distributions are often used to model text documents. However, they do not capture well the phenomenon that words in a document tend to appear in bursts: if a word appears once, it is more likely to appear again. In this paper, we propose the Dirichlet compound multinomial model (DCM) as an alternative to the multinomial. The DCM model has one additional degree of freedom, which allows it to capture burstiness. We show experimentally that the DCM is substantially better than the multinomial at modeling text data, measured by perplexity. We also show using three standard document collections that the DCM leads to better classification than the multinomial model. DCM performance is comparable to that obtained with multiple heuristic changes to the multinomial model. 1
    corecore