13,188 research outputs found

    LEARN Codes: Inventing Low-latency Codes via Recurrent Neural Networks

    Full text link
    Designing channel codes under low-latency constraints is one of the most demanding requirements in 5G standards. However, a sharp characterization of the performance of traditional codes is available only in the large block-length limit. Guided by such asymptotic analysis, code designs require large block lengths as well as latency to achieve the desired error rate. Tail-biting convolutional codes and other recent state-of-the-art short block codes, while promising reduced latency, are neither robust to channel-mismatch nor adaptive to varying channel conditions. When the codes designed for one channel (e.g.,~Additive White Gaussian Noise (AWGN) channel) are used for another (e.g.,~non-AWGN channels), heuristics are necessary to achieve non-trivial performance. In this paper, we first propose an end-to-end learned neural code, obtained by jointly designing a Recurrent Neural Network (RNN) based encoder and decoder. This code outperforms canonical convolutional code under block settings. We then leverage this experience to propose a new class of codes under low-latency constraints, which we call Low-latency Efficient Adaptive Robust Neural (LEARN) codes. These codes outperform state-of-the-art low-latency codes and exhibit robustness and adaptivity properties. LEARN codes show the potential to design new versatile and universal codes for future communications via tools of modern deep learning coupled with communication engineering insights

    MIST: A Novel Training Strategy for Low-latency Scalable Neural Net Decoders

    Full text link
    In this paper, we propose a low latency, robust and scalable neural net based decoder for convolutional and low-density parity-check (LPDC) coding schemes. The proposed decoders are demonstrated to have bit error rate (BER) and block error rate (BLER) performances at par with the state-of-the-art neural net based decoders while achieving more than 8 times higher decoding speed. The enhanced decoding speed is due to the use of convolutional neural network (CNN) as opposed to recurrent neural network (RNN) used in the best known neural net based decoders. This contradicts existing doctrine that only RNN based decoders can provide a performance close to the optimal ones. The key ingredient to our approach is a novel Mixed-SNR Independent Samples based Training (MIST), which allows for training of CNN with only 1\% of possible datawords, even for block length as high as 1000. The proposed decoder is robust as, once trained, the same decoder can be used for a wide range of SNR values. Finally, in the presence of channel outages, the proposed decoders outperform the best known decoders, {\it viz.} unquantized Viterbi decoder for convolutional code, and belief propagation for LDPC. This gives the CNN decoder a significant advantage in 5G millimeter wave systems, where channel outages are prevalent

    MMFNet: A Multi-modality MRI Fusion Network for Segmentation of Nasopharyngeal Carcinoma

    Full text link
    Segmentation of nasopharyngeal carcinoma (NPC) from Magnetic Resonance Images (MRI) is a crucial prerequisite for NPC radiotherapy. However, manually segmenting of NPC is time-consuming and labor-intensive. Additionally, single-modality MRI generally cannot provide enough information for its accurate delineation. Therefore, a multi-modality MRI fusion network (MMFNet) based on three modalities of MRI (T1, T2 and contrast-enhanced T1) is proposed to complete accurate segmentation of NPC. The backbone of MMFNet is designed as a multi-encoder-based network, consisting of several encoders to capture modality-specific features and one single decoder to fuse them and obtain high-level features for NPC segmentation. A fusion block is presented to effectively fuse features from multi-modality MRI. It firstly recalibrates low-level features captured from modality-specific encoders to highlight both informative features and regions of interest, then fuses weighted features by a residual fusion block to keep balance between fused ones and high-level features from decoder. Moreover, a training strategy named self-transfer, which utilizes pre-trained modality-specific encoders to initialize multi-encoder-based network, is proposed to make full mining of information from different modalities of MRI. The proposed method based on multi-modality MRI can effectively segment NPC and its advantages are validated by extensive experiments.Comment: 34 pages, 12 figure

    ESFNet: Efficient Network for Building Extraction from High-Resolution Aerial Images

    Full text link
    Building footprint extraction from high-resolution aerial images is always an essential part of urban dynamic monitoring, planning and management. It has also been a challenging task in remote sensing research. In recent years, deep neural networks have made great achievement in improving accuracy of building extraction from remote sensing imagery. However, most of existing approaches usually require large amount of parameters and floating point operations for high accuracy, it leads to high memory consumption and low inference speed which are harmful to research. In this paper, we proposed a novel efficient network named ESFNet which employs separable factorized residual block and utilizes the dilated convolutions, aiming to preserve slight accuracy loss with low computational cost and memory consumption. Our ESFNet obtains a better trade-off between accuracy and efficiency, it can run at over 100 FPS on single Tesla V100, requires 6x fewer FLOPs and has 18x fewer parameters than state-of-the-art real-time architecture ERFNet while preserving similar accuracy without any additional context module, post-processing and pre-trained scheme. We evaluated our networks on WHU Building Dataset and compared it with other state-of-the-art architectures. The result and comprehensive analysis show that our networks are benefit for efficient remote sensing researches, and the idea can be further extended to other areas. The code is public available at: https://github.com/mrluin/ESFNet-PytorchComment: 10 pages, 3 figures, 4 tables. Accepted for IEEE Acces

    Deepcode: Feedback Codes via Deep Learning

    Full text link
    The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly beats state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.Comment: 24 pages, 20 figure

    RedNet: Residual Encoder-Decoder Network for indoor RGB-D Semantic Segmentation

    Full text link
    Indoor semantic segmentation has always been a difficult task in computer vision. In this paper, we propose an RGB-D residual encoder-decoder architecture, named RedNet, for indoor RGB-D semantic segmentation. In RedNet, the residual module is applied to both the encoder and decoder as the basic building block, and the skip-connection is used to bypass the spatial feature between the encoder and decoder. In order to incorporate the depth information of the scene, a fusion structure is constructed, which makes inference on RGB image and depth image separately, and fuses their features over several layers. In order to efficiently optimize the network's parameters, we propose a `pyramid supervision' training scheme, which applies supervised learning over different layers in the decoder, to cope with the problem of gradients vanishing. Experiment results show that the proposed RedNet(ResNet-50) achieves a state-of-the-art mIoU accuracy of 47.8% on the SUN RGB-D benchmark dataset

    Label Refinement Network for Coarse-to-Fine Semantic Segmentation

    Full text link
    We consider the problem of semantic image segmentation using deep convolutional neural networks. We propose a novel network architecture called the label refinement network that predicts segmentation labels in a coarse-to-fine fashion at several resolutions. The segmentation labels at a coarse resolution are used together with convolutional features to obtain finer resolution segmentation labels. We define loss functions at several stages in the network to provide supervisions at different stages. Our experimental results on several standard datasets demonstrate that the proposed model provides an effective way of producing pixel-wise dense image labeling.Comment: 9 page

    Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems

    Full text link
    Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. To address these issues, here we show that the long-searched-for missing link is the convolution framelets for representing a signal by convolving local and non-local bases. The convolution framelets was originally developed to generalize the theory of low-rank Hankel matrix approaches for inverse problems, and this paper further extends the idea so that we can obtain a deep neural network using multilayer convolution framelets with perfect reconstruction (PR) under rectilinear linear unit nonlinearity (ReLU). Our analysis also shows that the popular deep network components such as residual block, redundant filter channels, and concatenated ReLU (CReLU) do indeed help to achieve the PR, while the pooling and unpooling layers should be augmented with high-pass branches to meet the PR condition. Moreover, by changing the number of filter channels and bias, we can control the shrinkage behaviors of the neural network. This discovery leads us to propose a novel theory for deep convolutional framelets neural network. Using numerical experiments with various inverse problems, we demonstrated that our deep convolution framelets network shows consistent improvement over existing deep architectures.This discovery suggests that the success of deep learning is not from a magical power of a black-box, but rather comes from the power of a novel signal representation using non-local basis combined with data-driven local basis, which is indeed a natural extension of classical signal processing theory.Comment: This will appear in SIAM Journal on Imaging Science

    DeepTurbo: Deep Turbo Decoder

    Full text link
    Present-day communication systems routinely use codes that approach the channel capacity when coupled with a computationally efficient decoder. However, the decoder is typically designed for the Gaussian noise channel and is known to be sub-optimal for non-Gaussian noise distribution. Deep learning methods offer a new approach for designing decoders that can be trained and tailored for arbitrary channel statistics. We focus on Turbo codes and propose DeepTurbo, a novel deep learning based architecture for Turbo decoding. The standard Turbo decoder (Turbo) iteratively applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with an interleaver in the middle. A neural architecture for Turbo decoding termed (NeuralBCJR), was proposed recently. There, the key idea is to create a module that imitates the BCJR algorithm using supervised learning, and to use the interleaver architecture along with this module, which is then fine-tuned using end-to-end training. However, knowledge of the BCJR algorithm is required to design such an architecture, which also constrains the resulting learned decoder. Here we remedy this requirement and propose a fully end-to-end trained neural decoder - Deep Turbo Decoder (DeepTurbo). With novel learnable decoder structure and training methodology, DeepTurbo reveals superior performance under both AWGN and non-AWGN settings as compared to the other two decoders - Turbo and NeuralBCJR. Furthermore, among all the three, DeepTurbo exhibits the lowest error floor

    LEDNet: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation

    Full text link
    The extensive computational burden limits the usage of CNNs in mobile devices for dense estimation tasks. In this paper, we present a lightweight network to address this problem,namely LEDNet, which employs an asymmetric encoder-decoder architecture for the task of real-time semantic segmentation.More specifically, the encoder adopts a ResNet as backbone network, where two new operations, channel split and shuffle, are utilized in each residual block to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, an attention pyramid network (APN) is employed in the decoder to further lighten the entire network complexity. Our model has less than 1M parameters,and is able to run at over 71 FPS in a single GTX 1080Ti GPU. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy trade-off on CityScapes dataset.Comment: 5 pages,3 figures,3 tables,accepted in IEEE ICIP 201
    corecore