116 research outputs found

    Semantic interoperability for an integrated product development process: a systematic literature review

    Get PDF
    International audienceGlobal competitiveness challenges manufacturing industry to rationalise different ways of bringing to the market new products in a short lead-time with competitive prices while ensuring higher quality levels and customisation. Industries need to effectively share heterogeneous information during Product Development Process (PDP) within and across their institutional boundaries to be competitive. However, problems with misinterpretation and mistakes have been identified during information exchange due to the semantic interoperability obstacles. Thus, this research proposes a systematic literature review to identify the main researches and the milestones reference works on semantic interoperability field. A rigorous methodology was conducted in different databases, covering the articles published in scientific journals from 2005 to 2015 as a preliminary study had indicated that the incidence of articles related to the subject was more frequent from the second half of the 2000s. The research structure consisted of four steps: Survey-searching, analysis and selection of recent researches; Categorization-categorization of the selected papers; References citation frequency analysis-the selected papers were analysed and the main researches and milestones references were identified; and Main researches critical analysis – the main researches were analysed for their contributions and limitations, their contributions and limitations, resulting in 14 selected scientific articles and 8 identified milestones references. It is evident that this field has interesting perspectives on future research opportunities on semantic interoperability of information issues across PDP, contributing to the new concepts of future factories

    A product design framework for one-of-a-kind production using integrated quality function deployment and operational research techniques

    Get PDF
    The process of product design as an early stage of new product development provides systematic approaches that can lead to the success of a company’s competitive strategy in the current turbulent market. By launching an efficient product design procedure can result in the reduction of engineering modifications, cost and production time. One-of-a-Kind Product (OKP) is known as a particular manufacturing system of new product design and development with emphasis on the special order concept. Quality Function Deployment (QFD) is a comprehensive design framework with cross-functional team members that leads to the development of new or improved products. QFD starts with the House of Quality (HOQ) as an organizing matrix to identify the customers’ requirements (CRs) and translate them into the technical attributes (TAs) of the product and followed by determining the target values for the sets of technical attributes. An evaluation approach to determine the relative importance of CRs and TAs should be considered. In previous researches, the traditional methods such as simple scoring method and application of operational research techniques such as Analytic Hierarchy Process (AHP) were reported to weigh the requirements and attributes. Despite the obvious inner-relationships among the elements, considering the HOQ as a hierarchical system may be inefficient. In addition, the contradictory effects of a TA on two or more CRs, is the problem that has been neglected. Here, a mathematical model was developed for calculating the TAs target values. A case study (dry gas filter, Namdaran Petro-Gas Industries (NPI™)) is presented to exhibit and verify the procedure of OKP product design. Initially, the framework was developed by integrating QFD-operational research (Analytic Network Process (ANP)) as a systematic method for improvement of dry gas filter design. Interview and study of documents were used to identify the CRs. A robust evaluation on customers’ priority and attributes’ importance with respect to inner-relationships among criteria/sub-criteria was performed. Furthermore, the effects of TAs on CRs with regard to their direction (positive/negative) were considered as the fundamental for developing a Multi-Objective Decision Model (MODM) to be used for determining the TAs target values. For this purpose, the fuzzy conversion scaling technique followed by formulating the partial satisfaction separately was applied. Modified TOPSIS was used to select the basic design among the available designs for further modification. Later, the process continues with the second phase, translating the TAs into the key parts. The available options (retailers) to supply the key parts were identified. As the normal procedure of QFD the relative importance’s of key parts and the options were determined. Finally, a zero-one goal programming was presented to select the optimum options for each key part subject to the budget constraint. Overall, the developed QFD-ANP framework provides a systematic approach that has the potential to be used for designing OKP product

    Product planning of manufactured construction products

    Get PDF
    The construction industry is experiencing further industrialisation to achieve greater efficiency and flexibility in the development of manufactured construction products. The development of these products poses challenges because of new complex design requirements and manufacturing processes. There is therefore a need to develop product planning methods that can effectively address these challenges. This research aims to develop product planning methods for complexity management of manufactured construction products. A framework for product planning for manufactured construction products is proposed, which involves application of methods for requirements management and modularisation. Using a reverse engineering approach, the Quality Function Deployment (QFD) method was applied to a modular plantroom to model and analyse its requirements. The plantroom QFD model facilitated a deeper understanding of requirements analysis than existing practice at the collaborating company. The QFD method was subsequently applied to a whole modular apartment building to analyse its requirements and investigate how requirements flow down across hierarchical levels. The application showed that a series of connected QFD models support requirements analysis by allowing to investigate systems structure, traceability and data analytic solutions of complex building systems. The QFD models were evaluated and validated by engineers at the collaborating company and were found to be effective at capturing and analysing requirements. QFD is a powerful requirements analysis method for manufactured construction products because it offers a more systematic, holistic and structured approach to requirements analysis than those currently adopted in the industry. The research also investigated the development and application of a multi-driver modularisation approach for manufactured construction products. The approach uses and integrates three modular tools, namely Dependency Structure Matrix, Modular Identification Matrix and Generational Variance Indexes, which support the design of flexible product systems. The approach is able to address multiple modularisation drivers and provide valuable design information.Open Acces

    Conception et application d'une méthodologie multicritère floue de sélection de logiciels de planification et d'ordonnancement avancé (APS)

    Get PDF
    Avec la mondialisation, la croissance des entreprises et les besoins de plus en plus exigeants des clients, les défis en termes de planification et d’ordonnancement des opérations en environnement manufacturier ne cessent de croitre. Face à cette situation, les entreprises manufacturières sont dans l’obligation de mettre à jour leurs politiques de planification et d’ordonnancement en adoptant des systèmes et des approches de planifications nouvelles telles que la planification et l’ordonnancement avancés (POA). Dans cet exercice, les entreprises désirant implanter des approches de POA ont généralement deux possibilités. Elles peuvent choisir de développer une solution personnalisée ou alors d’implanter des logiciels commerciaux de POA. La deuxième piste est plus courue de nos jours. L’objectif de ce travail est d’accompagner les entreprises désirant améliorer la planification et l’ordonnancement de leurs opérations par la sélection et l’implantation d’un logiciel commercial de POA. Plus précisément, le but de ce travail est d’évaluer et de sélectionner parmi les logiciels commerciaux de POA disponibles sur le marché celui qui satisfait au mieux les besoins de l’entreprise. Trois sous objectifs ont été identifiés : la cartographie des processus de planification et d’ordonnancement de l’entreprise, la capture des besoins de l’entreprise et la conception d’une nouvelle méthodologie de sélection intégrant sous incertitude à la fois les besoins de l’entreprise et les critères et sous critères de sélection. La méthodologie adoptée pour cette étude est celle dictée par la science de la conception, qui permet l’itération du processus de conception afin de perfectionner et de valider les résultats ou les livrables obtenus. Des données sont recueillies auprès d’experts et des preneurs de décisions internes à l’entreprise à l’aide d’entrevues individuelles et de groupes. Par ailleurs, en guise de contributions de cette recherche, trois méthodes ont été conçues. La première méthode permet de cartographier les processus de l’entreprise. La deuxième méthode est destinée à la capture des besoins de l’entreprise tandis que la troisième méthode intègre le déploiement de la fonction qualité (DFQ), l’analyse hiérarchique des processus (AHP) et la méthode VIKOR pour la sélection du logiciel qui satisfait au mieux les besoins de l’entreprise. Cette intégration est rendue possible en mettant en place une version modifiée du DFQ. L’incertitude sur les données provenant des enquêtes adressées aux experts et aux preneurs de décision est considérée par l’utilisation de la logique floue et des variables linguistiques. L’approche globale de l’étude est appliquée à un cas réel d’entreprise manufacturière. Les résultats montrent la pertinence des méthodes développées face au problème de selection d’un logiciel de POA

    Design techniques to support aircraft systems development in a collaborative MDO environment

    Get PDF
    The aircraft design is a complex multidisciplinary and collaborative process. Thousands of disciplinary experts with different design competences are involved within the whole development process. The design disciplines are often in contrast with each other, as their objectives might be not coincident, entailing compromises for the determination of the global optimal solution. Therefore, Multidisciplinary Design and Optimization (MDO) algorithms are being developed to mathematically overcome the divergences among the design disciplines. However, a MDO formulation might identify an optimal solution, but it could be not sufficient to ensure the success of a project. The success of a new project depends on two factors. The first one is relative to the aeronautical product, which has to be compliant with all the capabilities actually demanded by the stakeholders. Furthermore, a “better” airplane may be developed in accordance with customer expectations concerning better performance, lower operating costs and fewer emissions. The second important factor refers to the competitiveness among the new designed product and all the other competitors. The Time-To-Market should be reduced to introduce in the market an innovative product earlier than the other aeronautical industries. Furthermore, development costs should be decreased to maximize profits or to sell the product at a lower price. Finally, the development process must reduce all the risks due to wrong design choices. These two main motivations entail two main objectives of the current dissertation. The first main objective regards the assessment and development of design techniques for the integration of the aircraft subsystems conceptual design discipline within a collaborative and multidisciplinary development methodology. This methodology shall meet all the necessities required to design an optimal and competitive product. The second goal is relative to the employment of the proposed design methodology for the initial development of innovative solutions. As the design process is multidisciplinary, this thesis is focused on the on-board systems discipline, without neglecting the interactions among this discipline with all the other design disciplines. Thus, two kinds of subsystems are treated in the current dissertation. The former deals with hybrid-electric propulsion systems installed aboard Remotely Piloted Aerial Systems (RPASs) and general aviation airplanes. The second case study is centered on More and All Electric on-board system architectures, which are characterized by the removal of the hydraulic and/or pneumatic power generation systems in favor of an enhancement of the electrical system. The proposed design methodology is based on a Systems Engineering approach, according to which all the customer needs and required system functionalities are defined since the earliest phase of the design. The methodology is a five-step process in which several techniques are implemented for the development of a successful product. In Step 1, the design case and the requirements are defined. A Model Based Systems Engineering (MBSE) approach is adopted for the derivation and development of all the functionalities effectively required by all the involved stakeholders. All the design disciplines required in the MDO problem are then collected in Step 2. In particular, all the relations among these disciplines – in terms of inputs/outputs – are outlined, in order to facilitate their connection and the setup of the design workflow. As the present thesis is mainly focused on the on-board system design discipline, several algorithms for the preliminary sizing of conventional and innovative subsystems (included the hybrid propulsion system) are presented. In the third step, an MDO problem is outlined, determining objectives, constraints and design variables. Some design problems are analyzed in the present thesis: un-converged and converged Multidisciplinary Design Analysis (MDA), Design Of Experiments (DOE), optimization. In this regard, a new multi-objective optimization method based on the Fuzzy Logic has been developed during the doctoral research. This proposed process would define the “best” aircraft solution negotiating and relaxing some constraints and requirements characterized by a little worth from the user perspective. In Step 4, the formulation of the MDO problem is then transposed into a MDO framework. Two kinds of design frameworks are here considered. The first one is centered on the subsystems design, with the aim of preliminarily highlighting the impacts of this discipline on the entire Overall Aircraft Design (OAD) process and vice-versa. The second framework is distributed, as many disciplinary experts are involved within the design process. In this case, the level of fidelity of the several disciplinary modules is higher than the first framework, but the effort needed to setup the entire workflow is much higher. The proposed methodology ends with the investigation of the design space through the implemented framework, eventually selecting the solution of the design problem (Step 5). The capability of the proposed methodology and design techniques is demonstrated by means of four application cases. The first case study refers to the initial definition of the physical architecture of a hybrid propulsion system based on a set of needs and capabilities demanded by the customer. The second application study is focused on the preliminary sizing of a hybrid-electric propulsion system to be installed on a retrofit version of a well-known general aviation aircraft. In the third case study, the two kinds of MDO framework previously introduced are employed to design conventional, More Electric and All Electric subsystem architectures for a 90-passenger regional jet. The last case study aims at minimizing the aircraft development costs. A Design-To-Cost approach is adopted for the design of a hybrid propulsion system

    A smart knowledge deployment method for the conceptual design of low-carbon products

    Get PDF
    As the consciousness of the global environment and sustainability has increased, low-carbon products have played a vital role in the transformation to a circular economy. Advanced smart design technology has enabled product designers to fulfill customer requirements by offering tailor-made functions and low-carbon solutions. However, although the existing approaches used in the conceptual design process can help in functional reasoning, knowledge modelling, and scheme evaluation, the smart reuse of knowledge, such as in design model improvement and concept scheme iteration for lower carbon emission, the corresponding process evaluation concerning carbon footprint has not been given sufficient attention. To resolve this, in this work, a smart knowledge deployment method is proposed for reasoning, configuring, and optimizing the conceptual scheme (CS) based on carbon emission evaluation and interaction. First, to match discretized knowledge, sub-function requirements after function decomposition are mapped with granular clustered knowledge into a matrix based on a requirement function knowledge deployment (RFKD) model. Second, the derived candidate concept schemes (CCSs) are selected in three steps: conflict-based primaries, configuration, and carbon footprint ranking. Finally, the initial conceptual scheme (ICS) with the lowest carbon emission is used as input for the interactive genetic algorithm (IGA) to better capture a comprehensive set of user feedback on potential candidate schemes through interactions. Accordingly, improvements are completed as intended. The prototype design and an experimental study of a brand-new friction-wear testing machine are conducted. The results suggest that the proposed approach could effectively reduce the carbon emissions of products obtained through CS and improve the convergence of the schemes produced via genetic operation

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    Proceedings of the 18th International Conference on Engineering Design (ICED11):Book of Abstracts

    Get PDF
    The ICED series of conferences is the Design Society's "flagship" event. ICED11 took place on August 15-18, 2011, at the campus of the Danish Technical University in Lyngby/Copenhagen, Denmark. The Proceedings of the conference are published in 10 individual volumes, arranged according to topics. All volumes of the Proceedings may be purchased individually through Amazon and other on-line booksellers. For members of the Design Society, all papers are available on this website. The Programme and Abstract Book is publically available for download

    Structuring NPD processes: advancements in test scheduling and activity sequencing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The Functional-Engineered Product-Service System (FEPSS) model

    Get PDF
    Throughout recent years, environmental perils have increased and awareness regarding such dangers has improved proportionally. In light of the growing concerns, and coupled with fiercer competition and legislation, product based solutions to meet present and future needs have been deemed insufficient to ensure the planet’s survival. Thus, the birth of integrated product-service offerings, where the product is associated to add-on services, enhancing its performance and achieving higher levels of value for the customer, as well as the manufacturer, with embedded ecological advantages. The service-oriented perspective of delivering solutions is known as Product-Service Systems (PSSs). However, despite advances in acknowledging the benefits that lie in adopting a PSS to answer consumer needs, a formal approach to developing PSS solutions is absent. This dissertation investigates the integration of product design and service design strategies into product-service offerings: overall processes for this integration are present, but the intricate steps of each phase are missing. A literature review examines the most dominant design approaches, as well as design frameworks to structure the PSS design process. The outcome of the review led to the absence of a generic design framework as existing design approaches and processes seemed adapted to a specific context and field. From the examination of the respective literature, we present a four-stage design process, entitled the Functional-Engineered Product-Service System (FEPSS) model, built on a design science approach. Ideation and task analysis, conceptual design, embodiment design, and validation and release are thoroughly detailed with the appropriate tools to define the elements of a PSS. The research then concentrates on the first two stages as they represent the core of PSS design and development process. Ideation and task analysis highlight the use of qualitative tools to define customer requirements, as well as quantitative ones, such as the Kano model, Quality Function Deployment (QFD), the fuzzy logic, and the Analytic Hierarchy Process (AHP) to prioritize these requirements and define the value-creating ones as the basis of the PSS design. Conceptual design presents two approaches to define PSS concepts. The first consists of a functional decomposition approach based on adapting morphological matrices (MMs) to a product-service extending traditional MMs to include the service elements and selection of stakeholders in a product-service integrated setting. The choice of the concept is determined according to a life cycle modelling that illustrates the environmental impact of the proposed concept(s) and compares it/them to the existing offering. The second opts for the QFD for PSS tool augmented by fuzzy logic and the AHP to determine the product and service components of the PSS. Then, the use of Axiomatic Design (AD) shows how a functional decomposition and QFD for PSS can be used to develop PSS modules. Four case studies conducted in the agricultural and biomedical field illustrate the use of the FEPSS and, in particular, its first two phases. The results achieved show the potential of such an approach when implementing a PSS approach, especially in the case of a manufacturer that wants to shift from producing products to providing integrated product-service offerings. At the same time, from a more general perspective, the research work highlighted the benefits of PSSs as they allow the achievement of more sustainable solutions without decreasing the customer values
    corecore