232 research outputs found

    A Fast Estimation of Initial Rotor Position for Low-Speed Free-Running IPMSM

    Get PDF

    FPGA-based implementation of the back-EMF symmetric-threshold-tracking sensorless commutation method for brushless DC-machines

    Get PDF
    The operation of brushless DC permanent-magnet machines requires information of the rotor position to steer the semiconductor switches of the power-supply module which is commonly referred to as Brushless Commutation. Different sensorless techniques have been proposed to estimate the rotor position using current and voltage measurements of the machine. Detection of the back-electromotive force (EMF) zero-crossing moments is one of the methods most used to achieve sensorless control by predicting the commutation moments. Most of the techniques based on this phenomenon have the inherit disadvantage of an indirect detection of commutation moments. This is the result of the commutation moment occurring 30 electrical degrees after the zero-crossing of the induced back-emf in the unexcited phase. Often, the time difference between the zero crossing of the back-emf and the optimal current commutation is assumed constant. This assumption can be valid for steady-state operation, however a varying time difference should be taken into account during transient operation of the BLDC machine. This uncertainty degrades the performance of the drive during transients. To overcome this problem which improves the performance while keeping the simplicity of the back-emf zero-crossing detection method an enhancement is proposed. The proposed sensorless method operates parameterless in a way it uses none of the brushless dc-machine parameters. In this paper different aspects of experimental implementation of the new method as well as various aspects of the FPGA programming are discussed. Proposed control method is implemented within a Xilinx Spartan 3E XC3S500E board

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Advanced Modeling of Anisotropic Synchronous Machine Drives for Sensorless Control

    Get PDF
    Synchronous machines are extensively used for home appliances and industrial applications thanks to their fast dynamic response, good overload capability and high energy density. A precise knowledge of the rotor position is required to control efficiently this kind of motors. In most of the applications resolvers or absolute encoders are installed on the rotor shaft. The employment of position sensors leads to significant drawbacks such as the increased size and cost of the system and a lower reliability of the drive, caused by additional hardware and cabling. In sensorless drives motor position is estimated and employed in the machine control. Thus, no position sensor is required by the drive and all the drawbacks entailed by the sensor are eliminated. Moreover, the position estimation could be useful for redundancy in case of system failures. Therefore, position estimation techniques are object of great interest in the electric drives field. Position estimation techniques can be divided into two main categories: methods that are suitable for medium or high speed and techniques suitable for low speed or standstill operations. In the former group the motor position is estimated through a reconstruction of the permanent magnet flux or back electromotive force (back-EMF). In case of synchronous reluctance machines it is possible to reconstruct the extended active flux or back-EMF. Stator voltages and currents measurements are needed for these reconstruction methods. Since these signals amplitude is proportional to the rotor speed, position estimation can be successfully performed only for medium and high speed machine operations. In the low speed range, sensorless schemes exploit the rotor magnetic anisotropy. Thus, position can be estimated only for anisotropic motors, i.e. synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motors (PMA-SynRM) and interior permanent magnet synchronous motors (IPMSM). The rotor anisotropy is recognized thanks to an high frequency voltage injection in the stator windings. Several injection techniques have been proposed, differing from the signal typology. In particular, high frequency sinusoidal or square-wave carriers are often applied. The position information is usually extracted from the current response through a heterodyning demodulation that entails the use of low pass filters in the position estimator, limiting its dynamic. The aim of the research was proposing a new algorithm to estimate the rotor position from the HF current response, getting rid of the demodulation and its weaknesses. Thus, the ellipse fitting technique has been proposed. Robustness against signal processing delay effects and a reduced number of required filters are the main advantages of this novel approach. The inverse problem related to the ellipse fitting is solved implementing a recursive least squares algorithm. The proposed ellipse fitting technique is not affected by signal processing delay effects, and it requires the tuning of only one parameter, called forgetting factor, making the studied method suitable for industrial application thanks to its minimal setup effort. Besides the ellipse fitting technique for rotor position estimation, two other topics have been studied: - Computation of self-sensing capabilities of synchronous machines. - Online incremental inductances identification for SynRM.Synchronous machines are extensively used for home appliances and industrial applications thanks to their fast dynamic response, good overload capability and high energy density. A precise knowledge of the rotor position is required to control efficiently this kind of motors. In most of the applications resolvers or absolute encoders are installed on the rotor shaft. The employment of position sensors leads to significant drawbacks such as the increased size and cost of the system and a lower reliability of the drive, caused by additional hardware and cabling. In sensorless drives motor position is estimated and employed in the machine control. Thus, no position sensor is required by the drive and all the drawbacks entailed by the sensor are eliminated. Moreover, the position estimation could be useful for redundancy in case of system failures. Therefore, position estimation techniques are object of great interest in the electric drives field. Position estimation techniques can be divided into two main categories: methods that are suitable for medium or high speed and techniques suitable for low speed or standstill operations. In the former group the motor position is estimated through a reconstruction of the permanent magnet flux or back electromotive force (back-EMF). In case of synchronous reluctance machines it is possible to reconstruct the extended active flux or back-EMF. Stator voltages and currents measurements are needed for these reconstruction methods. Since these signals amplitude is proportional to the rotor speed, position estimation can be successfully performed only for medium and high speed machine operations. In the low speed range, sensorless schemes exploit the rotor magnetic anisotropy. Thus, position can be estimated only for anisotropic motors, i.e. synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motors (PMA-SynRM) and interior permanent magnet synchronous motors (IPMSM). The rotor anisotropy is recognized thanks to an high frequency voltage injection in the stator windings. Several injection techniques have been proposed, differing from the signal typology. In particular, high frequency sinusoidal or square-wave carriers are often applied. The position information is usually extracted from the current response through a heterodyning demodulation that entails the use of low pass filters in the position estimator, limiting its dynamic. The aim of the research was proposing a new algorithm to estimate the rotor position from the HF current response, getting rid of the demodulation and its weaknesses. Thus, the ellipse fitting technique has been proposed. Robustness against signal processing delay effects and a reduced number of required filters are the main advantages of this novel approach. The inverse problem related to the ellipse fitting is solved implementing a recursive least squares algorithm. The proposed ellipse fitting technique is not affected by signal processing delay effects, and it requires the tuning of only one parameter, called forgetting factor, making the studied method suitable for industrial application thanks to its minimal setup effort. Besides the ellipse fitting technique for rotor position estimation, two other topics have been studied: - Computation of self-sensing capabilities of synchronous machines. - Online incremental inductances identification for SynRM

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Sensorless Control of Switched-Flux Permanent Magnet Machines

    Get PDF
    This thesis investigates the sensorless control strategies of permanent magnet synchronous machines (PMSMs), with particular reference to switched-flux permanent magnet (SFPM) machines, based on high-frequency signal injection methods for low speed and standstill and the back-EMF based methods for medium and high speeds

    Novel Sensorless Control for Permanent Magnet Synchronous Machines Based on Carrier Signal Injection

    Get PDF

    Analysis and Application of the Direct Flux Control Sensorless Technique to Low-Power PMSMs

    Get PDF
    In the field of sensorless control of permanent magnet synchronous motors (PMSMs), different techniques based on machine anisotropies have been studied and implemented successfully. Nevertheless, most proposed approaches extract the rotor position information from the measured machine currents, that, when applied to low-power machines, might require high-bandwidth current sensors. An interesting alternative is given by sensorless techniques that exploit the star-point voltage of PMSMs, such as the direct flux control technique. This work aims at analyzing the conditions of applicability of such technique by considering a more thorough description of the machine inductance matrix. After a comprehensive mathematical description of the technique and characterization of the machine anisotropy information that is extracted from the star-point voltage, simulation as well as experimental results conducted on a test machine are presented and discussed in order to validate the proposed theory

    New Hybrid Sensorless Speed of a Non-Salient Pole PMSG Coupled to Wind turbine Using a Modified Switching Algorithm

    Get PDF
    ©2019 ISA. Published by Elsevier Ltd. All rights reserved. his manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/The paper focuses on the design of position and speed observers for the rotor of a non-salient pole permanent magnet synchronous generator (NSPPMSG) coupled to a wind turbine. With the random nature of wind speed this observer is required to provide a position and speed estimates over a wide speed range. The proposed hybrid structure combines two observers and a switching algorithm to select the appropriate observer based on a modified weighting coefficients method. The first observer is a higher-order sliding mode observer (HOSMO) based on modified super twisting algorithm (STA) with correction term and operates in the medium and nominal wind speed ranges. The second observer is used in the low speed range and is based on the rotor flux estimation and the control by injecting a direct reference current different to zero. The stability of each observer has been successfully assessed using an appropriate Lyapunov function. The simulation results obtained show the effectiveness and performance of the proposed observer and control scheme.Peer reviewe
    corecore