1,155 research outputs found

    Intelligent manipulation technique for multi-branch robotic systems

    Get PDF
    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system

    An Automated Dna Strands Detection System Featuring 32-Bit Arm7tdmi Microcontroller And Vga-Cmos Digital Image Sensor.

    Get PDF
    Genetic DNA recognition is a routine experiment for detecting the origin of the species. Electrophoresis is one of the processes for such detection which has been used extensively. Pengecaman genetik DNA ialah eksperimen rutin untuk mengesan asal usul sesuatu spesis. Proses electrophoresis ialah salah satu proses pengecaman yang digunakan secara meluas

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Ultrafast Imaging in Standard (Bi)CMOS Technology

    Get PDF

    Cognitive Robotics in Industrial Environments

    Get PDF

    Technologies for Astronomical Wide-Field Adaptive Optics

    Get PDF
    Adaptive Optics (AO) can greatly enhance the resolution of astronomical images, achieving close to diffraction-limited performance in the near infrared; however there are a number of areas where significant improvements can be made, one of them being the very limited field of view that current AO systems can achieve. ‘Wide-field AO’ encompasses those techniques devised to widen the corrected field of view, from a few tens of arcseconds in ‘classical AO’ systems to several arcminutes in Multi-Object AO (MOAO). This thesis researches some topics within ‘wide-field AO’ for astronomy, concentrating its experimental work in some of the key technologies required to implement MOAO: open-loop models to run deformable mirrors (DM) in a MOAO system and a ‘Figure Sensor’ to measure the shape of a DM with required accuracy and at high-speed, in order to incorporate it into the AO control system

    Lightfield Analysis and Its Applications in Adaptive Optics and Surveillance Systems

    Get PDF
    An image can only be as good as the optics of a camera or any other imaging system allows it to be. An imaging system is merely a transformation that takes a 3D world coordinate to a 2D image plane. This can be done through both linear/non-linear transfer functions. Depending on the application at hand it is easier to use some models of imaging systems over the others in certain situations. The most well-known models are the 1) Pinhole model, 2) Thin Lens Model and 3) Thick lens model for optical systems. Using light-field analysis the connection through these different models is described. A novel figure of merit is presented on using one optical model over the other for certain applications. After analyzing these optical systems, their applications in plenoptic cameras for adaptive optics applications are introduced. A new technique to use a plenoptic camera to extract information about a localized distorted planar wave front is described. CODEV simulations conducted in this thesis show that its performance is comparable to those of a Shack-Hartmann sensor and that they can potentially increase the dynamic range of angles that can be extracted assuming a paraxial imaging system. As a final application, a novel dual PTZ-surveillance system to track a target through space is presented. 22X optic zoom lenses on high resolution pan/tilt platforms recalibrate a master-slave relationship based on encoder readouts rather than complicated image processing algorithms for real-time target tracking. As the target moves out of a region of interest in the master camera, it is moved to force the target back into the region of interest. Once the master camera is moved, a precalibrated lookup table is interpolated to compute the relationship between the master/slave cameras. The homography that relates the pixels of the master camera to the pan/tilt settings of the slave camera then continue to follow the planar trajectories of targets as they move through space at high accuracies

    Development of a laser based inspection system for surface defect detection

    Get PDF
    The objective of this project was to design and develop a laser based inspection system for the detection of surface defects and to assess its potentiality for high-speed online applications. The basic components of this inspection system are a laser diode module as illumination source, a random access CMOS camera as detector unit, and an XYZ translation stage. Algorithms were developed to analyze the data obtained from the scanning of different sample surfaces. The inspection system was based on optical triangulation principle. The laser beam was incident obliquely to the sample surface. Differences in surface height were then detected as a horizontal shift of the laser spot on the sample surface. This enabled height measurements to be taken, as per the triangulation method. The developed inspection system was first calibrated in order to obtain a conversion factor that would render a relationship between the measured spot shift on the sensor and the vertical displacement of the surface. Experiments were carried out on different sample material surfaces: brass, aluminum <ind stainless steel. The developed system is able to accurately generate three-dimensional topographic maps of the defects presented to it in this work. A spatial resolution of approximately 70 pm and a depth resolution of 60 pm were achieved. Characterization o f the inspection system was also performed by measuring the accuracy of distance measurements

    Dynamic digital shearography for on-board robotic non-destructive testing of wind turbine blades

    Get PDF
    Structural integrity plays a critical role in development of infrastructural construction and support facilities. During the lifespan of most large-scale equipment, condition monitoring and periodic inspection is indispensable for ensuring structural health and evaluation of service condition. Wind turbine blades are the most important component of wind turbines and demands regular inspection to detect defects, which often occur underneath a blade surface. Current methods used to inspect wind turbine blades include to send NDT operators to climb the tower for on-site inspection of the blades’ surface or to dismantle the blades for inspection on the ground. These approaches are time-consuming, costly and pose risks of injury to human inspectors. Thus, it is necessary to develop a technological method for wind turbine blade on-site inspection of wind turbine blades. Digital shearography based on laser interferometry has demonstrated its prominent capability for inspecting composite material which is the main material used in the construction of wind turbine blades. Shearography is a ramification of holography interferometry and is more efficient to be used as a non-destructive testing (NDT) technique owing to its improved robustness and sensitivity to surface displacement. Robotic climbers, on the other hand, have recently drawn significant interest in NDT applications to replace human inspectors in extreme conditions. Thus, this thesis presents investigations into the development of a robotic NDT method using digital shearography for on-site inspection of wind turbine blades. The development of the shearography unit with correlation fringe pattern acquisition and the integration of this unit with the robotic climber adhering to wind turbine blades using vacuum generators are described in this thesis. The successful conduction of the indoor and outdoor trails for the integrated system verifies that shearography holds the ability to be used as an NDT tool for on-site wind turbine blade inspection, and that the climbing robot is able to access most areas of a wind turbine blade and stabilise itself to remove the impact on the shearography of the high frequencies from the climber’s vacuum motor and the low frequencies from the blade swing. Temporal phase shift shearography, and the fast phase map acquisition methods with less steps are evaluated in the thesis. Experiments are performed in lab with phase maps obtained using different algorithms. Apart from the conventional 4 steps and 3 steps phase shift algorithms, the modified 4+1 and 3+1 temporal phase shifting algorithms are developed for more suitability of semi-dynamic inspection by firstly calculating the correlation fringes and followed by the phase map calculations. The results of these modified methods are compared with the conventional 4 steps and 3 steps methods and are shown with equal qualities. Moreover, the reduced steps of phase shifting, i.e., 2+1 phase shifting methods are conducted for semi-dynamic phase map acquisition. It is found that the temporal phase shifting methods are not suitable for dynamic wind turbine blade inspection, however, the fast semi-dynamic temporal phase shift algorithms are able to produce phase maps with lower clarity. Pixelated spatial phase shift shearography is developed to remedy the limitation of temporal phase shift techniques. It adopts a micro-polarization sensor in the complementary metal oxide semiconductor (CMOS) camera, two linear polarizers, and a quarter waveplate as a new arrangement of optical path to replace the piezoelectric transducer stepper as the phase stepper. Three algorithms are introduced based on this novel developed system. Additionally, the site of view is enlarged for upgrading of the system. The development of the pixelated spatial phase shift shearography has mitigated the static processing limitation on temporal phase shift shearography, which caters for the demands of on-site NDT operation. At the same time, it remedies the current real-time shearography system which is not able to produce phase distributions for further quantitative analysis. The new developed pixelated spatial phase shift shearography system is thus more suitable for WTB on board inspection than both conventional and less-steps temporal phase shift shearography system. The field of view enlargement optimisation in the new developed spatial phase shift system indirectly reduces the distance for the inspection process and meanwhile enlarges the site of view, which consequently reduces the weight and structural complexity of the robotic-shearography integration system. The research addresses and resolves the difficulty of on-board wind turbine blade inspection with a novel robotic NDT approach using digital shearography. The approach is significant for real world industrial applications. Moreover, through the temporal and spatial phase shift evaluation, the research proves the feasibility of dynamically obtaining phase maps by the shearography system for further quantitative analysis without using temporal phase shift devices
    corecore