66 research outputs found

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves โ€žperceptualโ€Ÿ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the โ€žpartialโ€Ÿ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    ์žก์Œํ‚ค๋ฅผ ๊ฐ€์ง€๋Š” ์‹ ์›๊ธฐ๋ฐ˜ ๋™ํ˜•์•”ํ˜ธ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€,2020. 2. ์ฒœ์ •ํฌ.ํด๋ผ์šฐ๋“œ ์ƒ์˜ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์œ„์ž„ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ๋™ํ˜•์•”ํ˜ธ์˜ ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์‘์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์ œ๊ณต์ž์™€ ๋ถ„์„๊ฒฐ๊ณผ ์š”๊ตฌ์ž๊ฐ€ ์กด์žฌํ•˜๋Š” ์‹ค์ œ ํ˜„์‹ค์˜ ๋ชจ๋ธ์—์„œ๋Š” ๊ธฐ๋ณธ์ ์ธ ์•”๋ณตํ˜ธํ™”์™€ ๋™ํ˜• ์—ฐ์‚ฐ ์™ธ์—๋„ ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๊ณผ์ œ๋“ค์ด ๋‚จ์•„์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์—์„œ ํ•„์š”ํ•œ ์—ฌ๋Ÿฌ ์š”๊ตฌ์‚ฌํ•ญ๋“ค์„ ํฌ์ฐฉํ•˜๊ณ , ์ด์— ๋Œ€ํ•œ ํ•ด๊ฒฐ๋ฐฉ์•ˆ์„ ๋…ผํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ธฐ์กด์˜ ์•Œ๋ ค์ง„ ๋™ํ˜• ๋ฐ์ดํ„ฐ ๋ถ„์„ ์†”๋ฃจ์…˜๋“ค์€ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์ธต์œ„๋‚˜ ์ˆ˜์ค€์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์— ์ฐฉ์•ˆํ•˜์—ฌ, ์‹ ์›๊ธฐ๋ฐ˜ ์•”ํ˜ธ์™€ ๋™ํ˜•์•”ํ˜ธ๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์— ์ ‘๊ทผ ๊ถŒํ•œ์„ ์„ค์ •ํ•˜์—ฌ ํ•ด๋‹น ๋ฐ์ดํ„ฐ ์‚ฌ์ด์˜ ์—ฐ์‚ฐ์„ ํ—ˆ์šฉํ•˜๋Š” ๋ชจ๋ธ์„ ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด ๋ชจ๋ธ์˜ ํšจ์œจ์ ์ธ ๋™์ž‘์„ ์œ„ํ•ด์„œ ๋™ํ˜•์•”ํ˜ธ ์นœํ™”์ ์ธ ์‹ ์›๊ธฐ๋ฐ˜ ์•”ํ˜ธ์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜์˜€๊ณ , ๊ธฐ์กด์— ์•Œ๋ ค์ง„ NTRU ๊ธฐ๋ฐ˜์˜ ์•”ํ˜ธ๋ฅผ ํ™•์žฅํ•˜์—ฌ module-NTRU ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ ์›๊ธฐ๋ฐ˜ ์•”ํ˜ธ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ๋กœ, ๋™ํ˜•์•”ํ˜ธ์˜ ๋ณตํ˜ธํ™” ๊ณผ์ •์—๋Š” ์—ฌ์ „ํžˆ ๋น„๋ฐ€ํ‚ค๊ฐ€ ๊ด€์—ฌํ•˜๊ณ  ์žˆ๊ณ , ๋”ฐ๋ผ์„œ ๋น„๋ฐ€ํ‚ค ๊ด€๋ฆฌ ๋ฌธ์ œ๊ฐ€ ๋‚จ์•„์žˆ๋‹ค๋Š” ์ ์„ ํฌ์ฐฉํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ ์—์„œ ์ƒ์ฒด์ •๋ณด๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ณตํ˜ธํ™” ๊ณผ์ •์„ ๊ฐœ๋ฐœํ•˜์—ฌ ํ•ด๋‹น ๊ณผ์ •์„ ๋™ํ˜•์•”ํ˜ธ ๋ณตํ˜ธํ™”์— ์ ์šฉํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์•”๋ณตํ˜ธํ™”์™€ ๋™ํ˜• ์—ฐ์‚ฐ์˜ ์ „ ๊ณผ์ •์„ ์–ด๋Š ๊ณณ์—๋„ ํ‚ค๊ฐ€ ์ €์žฅ๋˜์ง€ ์•Š์€ ์ƒํƒœ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์•”ํ˜ธ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋™ํ˜•์•”ํ˜ธ์˜ ๊ตฌ์ฒด์ ์ธ ์•ˆ์ „์„ฑ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋™ํ˜•์•”ํ˜ธ๊ฐ€ ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ๋Š” ์ด๋ฅธ๋ฐ” Learning With Errors (LWE) ๋ฌธ์ œ์˜ ์‹ค์ œ์ ์ธ ๋‚œํ•ด์„ฑ์„ ๋ฉด๋ฐ€ํžˆ ๋ถ„์„ํ•˜์˜€๊ณ , ๊ทธ ๊ฒฐ๊ณผ ๊ธฐ์กด์˜ ๊ณต๊ฒฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋ณด๋‹ค ํ‰๊ท ์ ์œผ๋กœ 1000๋ฐฐ ์ด์ƒ ๋น ๋ฅธ ๊ณต๊ฒฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ˜„์žฌ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ๋™ํ˜•์•”ํ˜ธ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์•ˆ์ „ํ•˜์ง€ ์•Š์Œ์„ ๋ณด์˜€๊ณ , ์ƒˆ๋กœ์šด ๊ณต๊ฒฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ๋…ผํ•˜์˜€๋‹ค.Secure data analysis delegation on cloud is one of the most powerful application that homomorphic encryption (HE) can bring. As the technical level of HE arrive at practical regime, this model is also being considered to be a more serious and realistic paradigm. In this regard, this increasing attention requires more versatile and secure model to deal with much complicated real world problems. First, as real world modeling involves a number of data owners and clients, an authorized control to data access is still required even for HE scenario. Second, we note that although homomorphic operation requires no secret key, the decryption requires the secret key. That is, the secret key management concern still remains even for HE. Last, in a rather fundamental view, we thoroughly analyze the concrete hardness of the base problem of HE, so-called Learning With Errors (LWE). In fact, for the sake of efficiency, HE exploits a weaker variant of LWE whose security is believed not fully understood. For the data encryption phase efficiency, we improve the previously suggested NTRU-lattice ID-based encryption by generalizing the NTRU concept into module-NTRU lattice. Moreover, we design a novel method that decrypts the resulting ciphertext with a noisy key. This enables the decryptor to use its own noisy source, in particular biometric, and hence fundamentally solves the key management problem. Finally, by considering further improvement on existing LWE solving algorithms, we propose new algorithms that shows much faster performance. Consequently, we argue that the HE parameter choice should be updated regarding our attacks in order to maintain the currently claimed security level.1 Introduction 1 1.1 Access Control based on Identity 2 1.2 Biometric Key Management 3 1.3 Concrete Security of HE 3 1.4 List of Papers 4 2 Background 6 2.1 Notation 6 2.2 Lattices 7 2.2.1 Lattice Reduction Algorithm 7 2.2.2 BKZ cost model 8 2.2.3 Geometric Series Assumption (GSA) 8 2.2.4 The Nearest Plane Algorithm 9 2.3 Gaussian Measures 9 2.3.1 Kullback-Leibler Divergence 11 2.4 Lattice-based Hard Problems 12 2.4.1 The Learning With Errors Problem 12 2.4.2 NTRU Problem 13 2.5 One-way and Pseudo-random Functions 14 3 ID-based Data Access Control 16 3.1 Module-NTRU Lattices 16 3.1.1 Construction of MNTRU lattice and trapdoor 17 3.1.2 Minimize the Gram-Schmidt norm 22 3.2 IBE-Scheme from Module-NTRU 24 3.2.1 Scheme Construction 24 3.2.2 Security Analysis by Attack Algorithms 29 3.2.3 Parameter Selections 31 3.3 Application to Signature 33 4 Noisy Key Cryptosystem 36 4.1 Reusable Fuzzy Extractors 37 4.2 Local Functions 40 4.2.1 Hardness over Non-uniform Sources 40 4.2.2 Flipping local functions 43 4.2.3 Noise stability of predicate functions: Xor-Maj 44 4.3 From Pseudorandom Local Functions 47 4.3.1 Basic Construction: One-bit Fuzzy Extractor 48 4.3.2 Expansion to multi-bit Fuzzy Extractor 50 4.3.3 Indistinguishable Reusability 52 4.3.4 One-way Reusability 56 4.4 From Local One-way Functions 59 5 Concrete Security of Homomorphic Encryption 63 5.1 Albrecht's Improved Dual Attack 64 5.1.1 Simple Dual Lattice Attack 64 5.1.2 Improved Dual Attack 66 5.2 Meet-in-the-Middle Attack on LWE 69 5.2.1 Noisy Collision Search 70 5.2.2 Noisy Meet-in-the-middle Attack on LWE 74 5.3 The Hybrid-Dual Attack 76 5.3.1 Dimension-error Trade-o of LWE 77 5.3.2 Our Hybrid Attack 79 5.4 The Hybrid-Primal Attack 82 5.4.1 The Primal Attack on LWE 83 5.4.2 The Hybrid Attack for SVP 86 5.4.3 The Hybrid-Primal attack for LWE 93 5.4.4 Complexity Analysis 96 5.5 Bit-security estimation 102 5.5.1 Estimations 104 5.5.2 Application to PKE 105 6 Conclusion 108 Abstract (in Korean) 120Docto

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves โ€žperceptualโ€Ÿ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the โ€žpartialโ€Ÿ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    Lattice-Based Group Signatures and Zero-Knowledge Proofs of Automorphism Stability

    Get PDF
    We present a group signature scheme, based on the hardness of lattice problems, whose outputs are more than an order of magnitude smaller than the currently most efficient schemes in the literature. Since lattice-based schemes are also usually non-trivial to efficiently implement, we additionally provide the first experimental implementation of lattice-based group signatures demonstrating that our construction is indeed practical -- all operations take less than half a second on a standard laptop. A key component of our construction is a new zero-knowledge proof system for proving that a committed value belongs to a particular set of small size. The sets for which our proofs are applicable are exactly those that contain elements that remain stable under Galois automorphisms of the underlying cyclotomic number field of our lattice-based protocol. We believe that these proofs will find applications in other settings as well. The motivation of the new zero-knowledge proof in our construction is to allow the efficient use of the selectively-secure signature scheme (i.e. a signature scheme in which the adversary declares the forgery message before seeing the public key) of Agrawal et al. (Eurocrypt 2010) in constructions of lattice-based group signatures and other privacy protocols. For selectively-secure schemes to be meaningfully converted to standard signature schemes, it is crucial that the size of the message space is not too large. Using our zero-knowledge proofs, we can strategically pick small sets for which we can provide efficient zero-knowledge proofs of membership

    Learning with Errors in the Exponent

    Get PDF
    We initiate the study of a novel class of group-theoretic intractability problems. Inspired by the theory of learning in presence of errors [Regev, STOC\u2705] we ask if noise in the exponent amplifies intractability. We put forth the notion of Learning with Errors in the Exponent (LWEE) and rather surprisingly show that various attractive properties known to exclusively hold for lattices carry over. Most notably are worst-case hardness and post-quantum resistance. In fact, LWEE\u27s duality is due to the reducibility to two seemingly unrelated assumptions: learning with errors and the representation problem [Brands, Crypto\u2793] in finite groups. For suitable parameter choices LWEE superposes properties from each individual intractability problem. The argument holds in the classical and quantum model of computation. We give the very first construction of a semantically secure public-key encryption system in the standard model. The heart of our construction is an ``error recovery\u27\u27 technique inspired by [Joye-Libert, Eurocrypt\u2713] to handle critical propagations of noise terms in the exponent

    Fast Bootstrapping in Z_q

    Get PDF
    In 2015, Ducas and Micciancio presented a novel technique to compute the NAND gate using the Learning With Errors cryptosystem (LWE), along with a novel bootstrapping technique that turns turns this cryptosystem into a fully-homomorphic encryption scheme that allows a very short and fast implementation. We present an extension of their bootstrapping technique that allows refreshing encryptions of elements in Z_p and the homomorphic computation of arbitrary gates, alongside with an implementation that exploits the power of parallel computation.4 month

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Survey on Fully Homomorphic Encryption, Theory, and Applications

    Get PDF
    Data privacy concerns are increasing significantly in the context of Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next generation networks. Homomorphic Encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This paper comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. The paper delves into the mathematical foundations required to understand fully homomorphic encryption (FHE). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, the paper presents a view on privacy-preserving Machine Learning using homomorphic encryption, then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing, and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof
    • โ€ฆ
    corecore