11 research outputs found

    On the Performance Analysis of Cooperative Vehicular Communication

    Get PDF
    Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement

    BER and optimal power allocation for amplify-and-forward relaying using pilot-aided maximum likelihood estimation

    Get PDF
    Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB's in effective signal-to-noise ratio

    Energy harvesting AF relaying in the presence of interference and Nakagami-m fading

    Get PDF
    Energy-harvesting relaying is a promising solution to the extra energy requirement at the relay. It can transfer energy from the source to the relay. This will encourage more idle nodes to be involved in relaying. In this paper, the outage probability and the throughput of an amplify-and-forward relaying system using energy harvesting are analyzed. Both time switching and power-splitting harvesting schemes are considered. The analysis takes into account both the Nakagami-mm fading caused by signal propagation and the interference caused by other transmitters. Numerical results show that time switching is more sensitive to system parameters than power splitting. Also, the system performance is more sensitive to the transmission rate requirement, the signal-to-interference-plus-noise ratio in the first hop and the relaying method

    Performance analysis for cooperative wireless communications

    Get PDF
    Cooperative relaying has been proposed as a promising solution to mitigate and combat the deleterious effects of fading by sending and receiving independent copies of the same signal at different nodes. It has attracted huge attention from both industry and academia. The purpose of this thesis is to provide an analytical performance evaluation of the cooperative wireless systems while taking some realistic conditions into consideration. To achieve this, first, performance analysis of amplify-and-forward (AF) relaying using pilot-aided maximum likelihood estimation is studied in this thesis. Both disintegrated channel estimation (DCE) and cascaded channel estimation (CCE) are considered. Based on this analysis, optimal energy allocation is proposed. Then, performance analysis for AF relaying corrupted by interferers are investigated. Both randomly distributed and fixed interferers are considered. For random interferers, both the number and the locations of the interferers are random while for fixed interferers, both the number and the locations are fixed. Next, multihop relaying and multiple scattering channels over α - μ fading are analyzed. Channels with interferences and without interferences are considered. Exact results in the form of one-dimensional integral are derived. Also, approximate results with simplified structure and closed-form expressions are provided. Finally, a new hard decision fusion rule that combines arbitrary numbers of bits for different samples taken at different nodes is proposed. The best thresholds for the fusion rules using 2 bits, 3 bits and 4 bits are obtained through simulation. The bit error rate (BER) for hard fusion rule with 1 bit is provided. Numerical results are presented to show the accuracy of our analysis and provide insights. First, they show that our optimal energy allocation methods outperform the conventional system without optimal energy allocation, which could be as large as several dB’s in some cases. Second, with the increase of signal-to-interference-plus-noise ratio (SINR) for AF relaying with interference, the outage probability decreases accordingly for both random and fixed interferers. However, with the change of interference-to-noise ratio (INR) but with the SINR fixed, the outage probability for random interferers change correspondingly while the outage probability for fixed interferers remains almost the same. Third, our newly derived approximate expressions are shown to have acceptable performances in approximating outage probability in wireless multihop relaying system and multiple scattering channel considering interferences and without interferences. Last, our new hard decision fusion rule is shown to achieve better performance with higher energy efficiency. Also they show that there is a tradeoff between performance and energy penalty in the hard decision fusion rule

    Performance analysis of energy harvesting relaying

    Get PDF
    Recently, energy harvesting has been exploited as a key technique in wireless communications. Because conventional wireless systems are powered by batteries and cables, they tend to have restricted lifetime and flexibility. In order to solve these problems, wireless power has been investigated as a replacement for conventional batteries. This thesis focuses on energy harvesting in relaying. The data packet from the source to relay contains three parts: pilot for channel estimation, data symbols and pilots for harvesting. The data packet from the relay to the destination contains two parts: data symbols and pilots for estimation. To study energy harvesting, the performance of wireless powered communications is evaluated in terms of achievable rate and bit error rate, for applications where the downlink and the uplink are correlated, in contrast to previous works that assume independent uplink and downlink. Semi-closed expressions for the achievable rate and series expressions for the bit error rate are derived in Nakagami m fading channels, based on which the effect of link correlation is examined. Numerical results show that the link correlation has a significant impact on the achievable rate. Consequently, the optimum system parameter for correlated links is very different from that for independent links, showing the usefulness of our results. Also, the link correlation has a noticeable effect on the bit error rate, depending on the system parameters considered. Then, performance analysis has been performed for an AF relaying system with pilot-based channel estimation and time switching (TS) energy harvesting is conducted. Numerical results show the existence of the optimal values of the numbers of pilots for channel estimation and for energy harvesting, when the total size is fixed. Next, three novel structures using simultaneous wireless information and power transfer in energy harvesting amplify-and-forward (AF) relaying are investigated. Different combinations of time-switching (TS) and power-splitting (PS) energy harvesting protocols are studied. Closed-form expressions for the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) for the three structures are derived. Using these expressions, achievable rate (AR) and bit-error-rate (BER) are derived. Different parameters are examined. Numerical results show the optimal splitting ratio for channel estimation, energy harvesting and data transmission, when the packet size is fixed. Finally, the energy from the source and the energy from the ambient are merged together. The three ambient structures are studied. The closed-form expressions for the cumulative distribution function (CDF) of the end-to-end signal-to- noise ratio (SNR) for the three ambient structures are derived. Curve fitting has been used to achieve the approximately achievable rate (AR) and bit-error-rate (BER). The results provide the optimal values for channel estimation pilots and power splitting ratio series for these ambient RF added structures

    Channel estimation and parameters acquisition systems employing cooperative diversity

    Get PDF
    Doutoramento em Engenharia Eletrotécnica e TelecomunicaçõesThis work investigates new channel estimation schemes for the forthcoming and future generation of cellular systems for which cooperative techniques are regarded. The studied cooperative systems are designed to re-transmit the received information to the user terminal via the relay nodes, in order to make use of benefits such as high throughput, fairness in access and extra coverage. The cooperative scenarios rely on OFDM-based systems employing classical and pilot-based channel estimators, which were originally designed to pointto-point links. The analytical studies consider two relaying protocols, namely, the Amplifyand-Forward and the Equalise-and-Forward, both for the downlink case. The relaying channels statistics show that such channels entail specific characteristics that comply to a proper filter and equalisation designs. Therefore, adjustments in the estimation process are needed in order to obtain the relay channel estimates, refine these initial estimates via iterative processing and obtain others system parameters that are required in the equalisation. The system performance is evaluated considering standardised specifications and the International Telecommunication Union multipath channel models.Este trabalho tem por objetivo o estudo de novos esquemas de estimação de canal para sistemas de comunicação móvel das próximas gerações, para os quais técnicas cooperativa são consideradas. Os sistemas cooperativos investigados neste trabalho estão projetados para fazerem uso de terminais adicionais a fim de retransmitir a informação recebida para o utilizador final. Desta forma, pode-se usurfruir de benefícios relacionados às comunicações cooperativas tais como o aumento do rendimento do sistema, fiabilidade e extra cobertura. Os cenários são basedos em sistemas OFDM que empregam estimadores de canal que fazem uso de sinais piloto e que originalmente foram projetados para ligações ponto a ponto. Os estudos analíticos consideram dois protocolos de encaminhamento, nomeadamente, Amplify-and-Forward e Equalise-and-Forward, ambos para o caso downlink. As estatísticas dos canais em estudo mostram que tais canais ocasionam características específicas para as quais o filtro do estimador e a equalisação devem ser apropridamente projetados. Estas características requerem ajustes que são necessários no processo de estimação a fim de estimar os canais, refinar as estimativas iniciais através de processos iterativos e ainda obter outros parâmetros do sistema que são necessários na equalização. O desempenho dos esquemas propostos são avaliados tendo em consideração especificações padronizadas e modelos de canal descritos na International Telecommunication Union

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions
    corecore