632 research outputs found

    Models of Control Channels in the LTE System

    Get PDF
    DizertačnĂ­ prĂĄce se zabĂœvĂĄ zpracovĂĄnĂ­m signĂĄlu fyzickĂœch ƙídicĂ­ch kanĂĄlĆŻ systĂ©mu LTE a vyĆĄetƙovĂĄnĂ­m bitovĂ© chybovosti pƙi pƙenosu ƙídicĂ­ informace z vysĂ­lače do pƙijĂ­mače v zĂĄvislosti na podmĂ­nkĂĄch pƙíjmu. PrĂĄce je rozdělena do dvou hlavnĂ­ch částĂ­. PrvnĂ­ část prĂĄce je zaměƙena na simulaci pƙenosu ƙídicĂ­ informace LTE v zĂĄkladnĂ­m pĂĄsmu. Jsou zde prezentovĂĄny vytvoƙenĂ© simulĂĄtory ƙídicĂ­ch kanĂĄlĆŻ ve směru uplink i downlink. Simulace jsou provedeny pro vĆĄechny druhy nastavenĂ­ systĂ©mu a zĂĄkladnĂ­ modely pƙenosovĂ©ho prostƙedĂ­. Jsou zde popsĂĄny vĂœsledky vlivu pouĆŸitĂ­ MIMO technologiĂ­ na kvalitu pƙíjmu ƙídicĂ­ informace pƙedevĆĄĂ­m v ĂșnikovĂœch kanĂĄlech. DruhĂĄ část prĂĄce je zaměƙena na moĆŸnost nasazenĂ­ systĂ©mu LTE ve sdĂ­lenĂ©m pĂĄsmu ISM (2.4 GHz). Jsou zde pƙedstaveny zĂĄkladnĂ­ koncepce pouĆŸitĂ­, na jejichĆŸ zĂĄkladě je vytvoƙen scĂ©náƙ simulacĂ­. Kapitola dĂĄle popisuje tvorbu simulĂĄtoru koexistence LTE a systĂ©mu Wi-Fi v pƙenesenĂ©m pĂĄsmu ISM 2.4GHz. Jsou zde uvedeny vĂœsledky simulacĂ­ koexistence LTE a ruĆĄivĂ©ho systĂ©mu Wi-Fi provedenĂœch dle vytvoƙenĂ©ho scĂ©náƙe. VĂœsledky simulacĂ­ koexistence LTE a Wi-Fi jsou ověƙeny měƙenĂ­m v laboratornĂ­ch podmĂ­nkĂĄch. Toto porovnĂĄnĂ­ je dĆŻleĆŸitĂ© z hlediska optimalizace simulĂĄtoru koexistence. Dle vĂœsledkĆŻ obou typĆŻ simulacĂ­ a měƙenĂ­ jsou stanovena provoznĂ­ doporučenĂ­, kterĂĄ majĂ­ pƙispět k bezpečnĂ©mu a spolehlivĂ©mu vysĂ­lĂĄnĂ­ a pƙíjmu ƙídicĂ­ch informacĂ­ LTE i pƙi nepƙíznivĂœch podmĂ­nkĂĄch pƙíjmu.The doctoral thesis is focused on a signal processing in the LTE physical control channels and performance analysis of control information transmission according to receiving conditions. The thesis is divided into two parts. The first part deals with simulation of the transmission of control information in baseband. The created simulators for uplink and downlink are presented. The simulations are performed for all possible system settings and various channel models. The MIMO influence on a quality of control information reception under fading channels is also presented. The second part of the thesis is focused on LTE utilization in shared channel ISM (2.4 GHz). The basic LTE application concept for ISM band is presented. This concept is fundamental to created simulation scenario. The chapter also presents the LTE and Wi-Fi coexistence simulator in 2.4 GHz ISM passband. The coexistence simulation are presented according to simulation scenario and the results are shown. The simulated coexistence analysis results are verified in laboratory environment. The comparison of the simulated and the measured coexistence analysis results is crucial for further optimization of the coexistence simulator. Recommendations for optimal and reliable operation of LTE are specified according to the simulated and the measured results. Recommendations should be useful to the reliable transmission of LTE control information in bad receiving conditions.

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF

    Multi-user MIMO beamforming:implementation, verification in L1 capacity, and performance testing

    Get PDF
    Abstract. A certain piece of technology takes a lot of effort, research, and testing to reach the productisation phase. Radio features are implemented in layer 1 (L1) before moving to the hardware implementation phase, where their functioning is tested and verified. The target of the thesis is to implement and verify beamforming based multi-user multiple-input multiple-output (MU-MIMO) in L1 capacity and performance testing (PET) environment. The L1 testing environment mainly focuses on 4G and 5G stand-alone (SA) cases, while the focus of this thesis work is only on 5G SA technology, which features beamforming and MU-MIMO. Beamforming and MU-MIMO have been tested in an end-to-end system but not specifically in L1. The L1 testing provides a deeper analysis of beamforming and MU-MIMO in L1 and aids in problem identification at an early productisation phase, saving both time and money. L1 PET has multiple components that work together for L1 data transmission in both uplink (UL) and downlink (DL) directions and handle the verification of the transmitted data. The main components that play a key role in the implementation of multi-user MIMO beamforming concern frame design setup, message setup for UL and DL using correct channels and interfaces, transmission of the generated data in UL and DL, and message capturing at L1 end (whether correct messages are transmitted or not). For verification purposes, methods such as analysing plots from L1 log results based on comparison with radio specifications are used to determine whether the generated test output is correct or not. Finally, performance metrics, such as error vector magnitude (EVM), UE per transmission time interval (TTI), number of layers per UE, channel quality indicator (CQI), physical resource block (PRB) count, and throughput, are evaluated to assess the capacity and performance correctness of the implemented test setup

    Esquemas de cooperação entre estaçÔes base para o LTE no sentido descendente

    Get PDF
    The explosive growth in wireless traffic and in the number of connected devices as smart phones or computers, are causing a dramatic increase in the levels of interference, which significantly degrades the capacity gains promised by the point-to-point multi input, multi output (MIMO) based techniques. Therefore, it is becoming increasingly clear that major new improvements in spectral efficiency of wireless networks will have to entail addressing intercell interference. So, there is a need for a new cellular architecture that can take these factors under consideration. It is in this context that LTE-Advanced arises. One of the most promising LTE-Advanced technology is Coordinated Multipoint (CoMP), which allows base stations to cooperate among them, in order to mitigate or eliminate the intercell interference and, by doing so, increase the system’s capacity. This thesis intends to study this concept, implementing some schemes that fall under the CoMP concept. In this thesis we consider a distributed precoded multicell approach, where the precoders are computed locally at each BS to mitigate the intercell interference. Two precoder are considered: distributed zero forcing (DZF) and distributed virtual signal-to-interference noise ratio (DVSINR) recently proposed. Then the system is further optimized by computing a power allocation algorithm over the subcarriers that minimizes the average bit error rate (BER). The considered algorithms are also evaluated under imperfect channel state information. A quantized version of the CSI associated to the different links between the BS and the UT is feedback from the UT to the BS. This information is then employed by the different BSs to perform the precoding design. A new DVSINR precoder explicitly designed under imperfect CSI is proposed. The proposed schemes were implemented considering the LTE specifications, and the results show that the considered precoders are efficiently to remove the interference even under imperfect CSI.O crescimento exponencial no trĂĄfego de comunicaçÔes sem-fios e no nĂșmero de dispositivos utilizados (smart phones, computadores portĂĄteis, etc.) estĂĄ a causar um aumento significativo nos nĂ­veis de interferĂȘncia, que prejudicam significativamente os ganhos de capacidade assegurados pelas tecnologias baseadas em ligaçÔes ponto-a-ponto MIMO. Deste modo, torna-se cada vez mais necessĂĄrio que os grandes aperfeiçoamentos na eficiĂȘncia espectral de sistemas de comunicaçÔes sem-fios tenham em consideração a interferĂȘncia entre cĂ©lulas. De forma a tomar em consideração estes aspectos, uma nova arquitectura celular terĂĄ de ser desenvolvida. É assim, neste contexto, que surge o LTE-Advanced. Uma das tecnologias mais promissoras do LTE-Advanced Ă© a Coordenação Multi-Ponto (CoMP), que permite que as estaçÔes base cooperem de modo a mitigar a interferĂȘncia entre cĂ©lulas e, deste modo, aumentar a capacidade do sistema. Esta dissertação pretende estudar este conceito, implementando para isso algumas tĂ©cnicas que se enquadram no conceito do CoMP. Nesta dissertação iremos considerar a implementação de um sistema de prĂ©-codificação em mĂșltiplas cĂ©lulas, em que os prĂ©-codificadores sĂŁo calculados em cada BS, de modo a mitigar a interferĂȘncia entre cĂ©lulas. SĂŁo considerados dois prĂ©-codificadores: Distributed Zero Forcing (DZF) e Distributed Virtual Signal-to-Interferance Noise Ratio (DVSINR), recentemente proposto. De seguida o sistema Ă© optimizado com a introdução de algoritmos de alocação de potĂȘncia entre as sub-portadoras com o objectivo de minimizar a taxa mĂ©dia de erros (BER). Os algoritmos considerados sĂŁo tambĂ©m avaliados em situaçÔes em que a informação do estado do canal Ă© imperfeita. Uma versĂŁo quantizada da CSI associada a cada uma das diferentes ligaçÔes entre as BS e os UT Ă© assim enviada do UT para a BS. Esta informação Ă© entĂŁo utilizada para calcular os diferentes prĂ©-codificadores em cada BS. Uma nova versĂŁo do prĂ©-codificador DVSINR Ă© proposta de modo a lidar com CSI imperfeito. Os esquemas propostos foram implementados considerandos especificaçÔes do LTE, e os resultados obtidos demonstram que os prĂ©-codificadores removem de uma forma eficiente a interferĂȘncia, mesmo em situaçÔes em que a CSI Ă© imperfeita

    A selective control information detection scheme for OFDM receivers

    Get PDF
    In wireless communications, both control information and payload (user-data) are concurrently transmitted and required to be successfully recovered. This paper focuses on block-level detection, which is applicable for detecting transmitted control information, particularly when this information is selected or chosen from a finite set of information that are known at both transmitting and receiving devices. Using an orthogonal frequency division multiplexing architecture, this paper investigates and evaluates the performance of a time-domain decision criterion in comparison with a form of Maximum Likelihood (ML) estimation method. Unlike the ML method, the proposed time-domain detection technique requires no channel estimation as it uses the correlation (in the time-domain) that exists between the received and the transmitted selective information as a means of detection. In comparison with the ML method, results show that the proposed method offers improved detection performance, particularly when the control information consists of at least 16. However, the implementation of the proposed method requires a slightly increased number of mathematical computations

    A use case of low power wide area networks in future 5G healthcare applications

    Get PDF
    Abstract. The trend in all cellular evolution to the Long-Term Evolution (LTE) has always been to offer users continuously increasing data rates. However, the next leap forwards towards the 5th Generation Mobile Networks (5G) will be mainly addressing the needs of devices. Machines communicating with each other, sensors reporting to a server, or even machines communicating with humans, these are all different aspects of the same technology; the Internet of Things (IoT). The key differentiator between Machine-to-Machine (M2M) communications and IoT will be the added -feature of connecting devices and sensors not only to themselves, but also to the internet. The appropriate communications network is the key to allow this connectivity. Local Area Networks (LANs) and Wide Area Networks (WANs) have been thought of as enablers for IoT, but since they both suffered from limitations in IoT aspects, the need for a new enabling technology was evident. LPWANs are networks dedicated to catering for the needs of IoT such as providing low energy consumption for wireless devices. LPWANs can be categorized into proprietary LPWANs and cellular LPWANs. Proprietary LPWANs are created by an alliance of companies working together on creating a communications standard operating in unlicensed frequency bands. An example of proprietary LPWANs is LoRa. Whereas cellular LPWANs are standardized by the 3rd Partnership Project (3GPP) and they are basically versions of the LTE standard especially designed for machine communications. An example of cellular LPWANs is Narrowband IoT (NB IoT). This diploma thesis documents the usage of LoRa and NB IoT in a healthcare use case of IoT. It describes the steps and challenges of deploying an LTE network at a target site, which will be used by the LoRa and NB IoT sensors to transmit data through the 5G test network (5GTN) to a desired server location for storing and later analysis.Matalan tehonkulutuksen ja pitkÀnkantaman teknologian kÀyttötapaus tulevaisuuden 5G:tÀ hyödyntÀvissÀ terveydenhoidon sovelluksissa. TiivistelmÀ. PitemmÀn aikavÀlin tarkastelussa matkaviestintÀteknologian kehittyminen nykyisin kÀytössÀ olevaan Long-Term Evolution (LTE) teknologiaan on tarkoittanut kÀyttÀjille yhÀ suurempia datanopeuksia. Seuraavassa askeleessa kohti 5. sukupolven matkaviestintÀverkkoja (5G) lÀhestytÀÀn kehitystÀ myös laitteiden tarpeiden lÀhtökohdista. Toistensa kanssa kommunikoivat koneet, palvelimille dataa lÀhettÀvÀt anturit tai jopa ihmisten kanssa kommunikoivat koneet ovat kaikki eri puolia samasta teknologisesta kÀsitteestÀ; esineiden internetistÀ (IoT). Oleellisin ero koneiden vÀlisessÀ kommunikoinnissa (M2M) ja IoT:ssÀ on, ettÀ erinÀiset laitteet tulevat olemaan yhdistettyinÀ paitsi toisiinsa myös internettiin. TÀtÀ kytkentÀisyyttÀ varten tarvitaan tarkoitukseen kehitetty matkaviestinverkko. SekÀ lÀhiverkkoja (LAN) ettÀ suuralueverkkoja (WAN) on pidetty mahdollisina IoT mahdollistajina, mutta nÀiden molempien kÀsitteiden alle kuuluvissa teknologioissa on rajoitteita IoT:n vaatimusten lÀhtökohdista, joten uuden teknologian kehittÀminen oli tarpeellista. Matalan tehonkulutuksen suuralueverkko (LP-WAN) on kÀsite, johon luokitellaan eri teknologioita, joita on kehitetty erityisesti IoT:n tarpeista lÀhtien. LP-WAN voidaan jaotella ainakin itse kehitettyihin ja matkaviestinverkkoihin perustuviin teknologisiin ratkaisuihin. Itse kehitetyt ratkaisut on luotu lukuisten yritysten yhteenliittymissÀ eli alliansseissa ja nÀmÀ ratkaisut keskittyvÀt lisensoimattomilla taajuuksilla toimiviin langattomiin ratkaisuihin, joista esimerkkinÀ laajasti kÀytössÀ oleva LoRa. Matkaviestinverkkoihin perustuvat lisensoiduilla taajuuksilla toimivat ratkaisut on puolestaan erikseen standardoitu 3GPP-nimisessÀ yhteenliittymÀssÀ, joka nykyisellÀÀn vastaa 2G, 3G ja LTE:n standardoiduista pÀÀtöksistÀ. Esimerkki 3GPP:n alaisesta LPWAN-luokkaan kuuluvasta teknologiasta on kapea kaistainen IoT-teknologia, NB-IoT. TÀssÀ diplomityössÀ keskitytÀÀn terveydenhoidon kÀyttötapaukseen, missÀ antureiden mittaamaa tietoa siirretÀÀn langattomasti kÀyttÀen sekÀ LoRa ettÀ NB-IoT teknologioita. TyössÀ kuvataan eri vaiheet ja haasteet, joita liittyi kun rakennetaan erikseen tiettyyn kohteeseen LTE-verkon radiopeitto, jotta LoRa:a ja NB-IoT:a kÀyttÀvÀt anturit saadaan vÀlittÀmÀÀn mitattua dataa halutulle palvelimelle sÀilytykseen ja myöhempÀÀ analysointia varten. LTE-radiopeiton rakensi Oulun yliopiston omistama 5G testiverkko, jonka tarkoitus on tukea sekÀ tutkimusta ettÀ ympÀröivÀÀ ekosysteemiÀ tulevaisuuden 5G:n kehityksessÀ
    • 

    corecore