53 research outputs found

    The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview

    Get PDF
    Background: This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. Methods: Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. Results: After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. Discussion: Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community

    From teleoperation to autonomous robot-assisted microsurgery: A survey

    Get PDF
    Robot-assisted microsurgery (RAMS) has many benefits compared to traditional microsurgery. Microsurgical platforms with advanced control strategies, high-quality micro-imaging modalities and micro-sensing systems are worth developing to further enhance the clinical outcomes of RAMS. Within only a few decades, microsurgical robotics has evolved into a rapidly developing research field with increasing attention all over the world. Despite the appreciated benefits, significant challenges remain to be solved. In this review paper, the emerging concepts and achievements of RAMS will be presented. We introduce the development tendency of RAMS from teleoperation to autonomous systems. We highlight the upcoming new research opportunities that require joint efforts from both clinicians and engineers to pursue further outcomes for RAMS in years to come

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    A Magnetic Laser Scanner for Endoscopic Microsurgery

    Get PDF
    Laser scanners increase the quality of the laser microsurgery enabling fast tissue ablation with less thermal damage. Such technology is part of state-of-the-art freebeam surgical laser systems. However, laser scanning has not been incorporated to fiber-based lasers yet. This is a combination that has potential to greatly improve the quality of laser microsurgeries on difficult-to-reach surgical sites. Current fiberbased tissue ablations are performed in contact with the tissue, resulting in excessive thermal damage to healthy tissue in the vicinity of the ablated tissue. This is far from ideal for delicate microsurgeries, which require high-quality tissue incisions without any thermal damage or char formation. However, the possibility to perform scanning laser microsurgery in confined workspaces is restricted by the large size of currently available actuators, which are typically located outside the patient and require direct line-of-sight to the microsurgical area. Thus, it is desired to have the laser scanning feature in an endoscopic system to provide high incision quality in hard-to-reach surgical sites. This thesis aims to introduce a new endoscopic laser scanner to perform 2D position control and high-speed scanning of a fiber-based laser for operation in narrow workspaces. It also presents a technology concept aimed at assisting in incision depth control during soft-tissue microsurgery. The main objective of the work presented in this thesis is to bring the benefits of free-beam lasers to laser-based endoscopic surgery by designing an end-effector module to be placed at the distal tip of a flexible robot arm. To this end, the design and control of a magnetic laser scanner for endoscopic microsurgeries is presented. The system involves an optical fiber, electromagnetic coils, a permanent magnet and optical lenses in a compact system for laser beam deflection. The actuation mechanism is based on the interaction between the electromagnetic field and the permanent magnets. A cantilevered optical fiber is bended with the magnetic field induced by the electromagnetic coils by creating magnetic torque on the permanent magnet. The magnetic laser scanner provides 2D position control and high-speed scanning of the laser beam. The device includes laser focusing optics to allow non-contact incisions. A proof-of-concept device was manufactured and evaluated. It includes four electromagnetic coils and two plano-convex lenses, and has an external diameter of 13 mm. A 4 74 mm2 scanning range was achieved at a 30 mm distance from the scanner tip. Computer-controlled trajectory executions demonstrated repeatable results with 75 m precision for challenging trajectories. Frequency analysis demonstrated stable response up to 33 Hz for 3 dB limit. The system is able to ablate tissue substitutes with a 1940 nm wavelength surgical diode laser. Tablet-based control interface has been developed for intuitive teleoperation. The performance of the proof-of-concept device is analysed through control accuracy and usability studies. Teleoperation user trials consisting in trajectory-following tasks involved 12 subjects. Results demonstrated users could achieve an accuracy of 39 m with the magnetic laser scanner system. For minimally invasive surgeries, it is essential to perform accurate laser position control. Therefore, a model based feed-forward position control of magnetic laser scanner was developed for automated trajectory executions. First, the dynamical model of the system was identified using the electromagnets current (input) and the laser position (output). Then, the identified model was used to perform feedforward control. Validation experiments were performed with different trajectory types, frequencies and amplitudes. Results showed that desired trajectories can be executed in high-speed scanning mode with less than 90 m (1.4 mrad bending angle) accuracy for frequencies up to 15 Hz. State-of-the-art systems do not provide incision depth control, thus the quality of such control relies entirely on the experience and visual perception of the surgeons. In order to provide intuitive incision depth control in endoscopic microsurgeries, the concept of a technology was presented for the automated laser incisions given a desired depth based on a commercial laser scanner. The technology aims at automatically controlling laser incisions based on high-level commands from the surgeon, i.e. desired incision shape, length and depth. A feed-forward controller provides (i) commands to the robotic laser system and (ii) regulates the parameters of the laser source to achieve the desired results. The controller for the incision depth is extracted from experimental data. The required energy density and the number of passes are calculated to reach the targeted depth. Experimental results demonstrate that targeted depths can be achieved with \ub1100 m accuracy, which proves the feasibility of this approach. The proposed technology has the potential to facilitate the surgeon\u2019s control over laser incisions. The magnetic laser scanner enables high-speed laser positioning in narrow and difficult-to-reach workspaces, promising to bring the benefits of scanning laser microsurgery to flexible endoscopic procedures. In addition, the same technology can be potentially used for optical fiber based imaging, enabling for example the creation of new family of scanning endoscopic OCT or hyperspectral probes

    Intelligent active force control of human hand tremor using smart actuator

    Get PDF
    Patients suffering from Parkinson’s disease (PD) experience tremor which may generate a functional disability impacting their daily life activities. In order to provide a non-invasive solution, an active tremor control technique is proposed to suppress a human hand tremor. In this work, a hybrid controller which is a combination of the classic Proportional-Integral (PI) control and Active Force Control (AFC) strategy was employed. A test-rig is utilized as a practical test and verification platform of the controller design. A linear voice coil actuator (LVCA) was utilized as the main active suppressive element to control the tremor of hand model in collocation with the sensor. In order to validate the AFC scheme in real-time application, an accelerometer was used to obtain the measured values of the parameter necessary for the feedback control action. Meanwhile, a laser displacement sensor was used to quantify the displacement signal while hand shaking. To optimize the controller parameters, three different optimization techniques, namely the genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) techniques were incorporated into the hybrid PI+AFC controller to obtain a better performance in controlling tremor of the system. For the simulation study, two different models were introduced to represent the human hand in the form of a mathematical model with four degree-of-freedom (4 DOF) biodynamic response (BR) and a parametric model as the plant model. The main objective of this investigation is to optimize the PI and AFC parameters using three different types of intelligent optimization techniques. Then, the parameters that have been identified were tested through an experimental work to evaluate the performance of controller. The findings of the study demonstrate that the hybrid controller gives excellent performance in reducing the tremor error in comparison to the classic pure PI controller. Based on the fitness evaluation, the AFC-based scheme enhances the PI controller performance roughly around 10% for all optimization techniques. Besides that, an intelligent mechanism known as iterative learning control (ILC) was incorporated into the AFC loop (called as AFCAIL) to find the estimated mass parameter. In addition, a sensitivity analysis was presented to investigate the performance and robustness of the voice coil actuator with the proposed controller in real-time environment. The results prove that the AFCAIL controller gives an excellent performance in reducing the hand tremor error in comparison with the classic P, PI and hybrid PI+AFC controllers. These outcomes provide an important contribution towards achieving novel methods in suppressing hand tremor by means of intelligent control

    The Hand-Held Force Magnifier: Surgical Tools to Augment the Sense of Touch

    Get PDF
    Modern surgeons routinely perform procedures with noisy, sub-threshold, or obscured visual and haptic feedback,either due to the necessary approach, or because the systems on which they are operating are exceeding delicate. For example, in cataract extraction, ophthalmic surgeons must peel away thin membranes in order to access and replace the lens of the eye. Elsewhere, dissection is now commonly performed with energy-delivering tools – rather than sharp blades – and damage to deep structures is possible if tissue contact is not well controlled. Surgeons compensate for their lack of tactile sensibility by relying solely on visual feedback, observing tissue deformation and other visual cues through surgical microscopes or cameras. Using visual information alone can make a procedure more difficult, because cognitive mediation is required to convert visual feedback into motor action. We call this the “haptic problem” in surgery because the human sensorimotor loop is deprived of critical tactile afferent information, increasing the chance for intraoperative injury and requiring extensive training before clinicians reach independent proficiency. Tools that enhance the surgeon’s direct perception of tool-tissue forces can therefore potentially reduce the risk of iatrogenic complications and improve patient outcomes. Towards this end, we have developed and characterized a new robotic surgical tool, the Hand-Held Force Magnifier (HHFM), which amplifies forces at the tool tip so they may be readily perceived by the user, a paradigm we call “in-situ” force feedback. In this dissertation, we describe the development of successive generations of HHFM prototypes, and the evaluation of a proposed human-in-the-loop control framework using the methods of psychophysics. Using these techniques, we have verified that our tool can reduce sensory perception thresholds, augmenting the user’s abilities beyond what is normally possible. Further, we have created models of human motor control in surgically relevant tasks such as membrane puncture, which have shown to be sensitive to push-pull direction and handedness effects. Force augmentation has also demonstrated improvements to force control in isometric force generation tasks. Finally, in support of future psychophysics work, we have developed an inexpensive, high-bandwidth, single axis haptic renderer using a commercial audio speaker

    Modeling and experimental validation of a parallel microrobot for biomanipulation

    Get PDF
    The main purpose of this project is the development of a commercial micropositioner's (SmarPod 115.25, SmarAct GmbH) geometrical model. SmarPod is characterized by parallel kinematics and is employed for precise and accurate sample's positioning under SEM microscope, being vacuum-compatible, for various applications. Geometrical modeling represents the preliminar step to fully understand, and possibly improve, robot's closed loop behaviour in terms of task's quality precision, when enterprises does not provide sufficient documentation. The robotic system, in fact, represents in this case a "black box" from which it's possible to extract information. This step is essential in order to improve, consequently, the reliability of bio-microsystem manipulation and characterization. Disposing of a detailed microrobot's model becomes essential to deal with the typical lack of sensing at microscale, as it allows a 3D precise and adequate reconstruction, realized through proper softwares, of the manipulation set-up. The roles of Virtual Reality (VR) and of simulations, carried out, in this case, in Blender environment, are asserted as well as an essential helping tool in mycrosystem's task planning. Blender is a professional free and open-source 3D computer graphics software and it is proven to be a basic instrument to validate microrobot's model, even to simplify it in case of complex system's geometries

    Brachial Plexus Injury

    Get PDF
    In this book, specialists from different countries and continents share their knowledge and experience in brachial plexus surgery. It discusses the different types of brachial plexus injury and advances in surgical treatments

    The Development of an Antagonistic SMA Actuation Technology for the Active Cancellation of Human Tremor.

    Full text link
    Human Tremor is an unintentional bodily motion that affects muscle control among both healthy individuals and those with movement disorders, occasionally to severe detriment. While assistive devices avoid the risk of side effects from pharmacological or surgical treatments, most devices are impractical for daily use due to limitations inherent in conventional actuators. The goal of this research is to address these limitations by developing an antagonistic Shape Memory Alloy (SMA) actuation technology, enabling a new class of active tremor cancellation devices. This is accomplished through the construction of a model and body of empirical support that provides the necessary design insight and predictive power for an antagonistic actuator that ensures stable amplitude and high frequency motion with low power draw. Actuation frequency and power draw were improved while balancing their competing effects through the development of: 1) a method that accurately measures the convective coefficient of SMA to enhance actuator design, 2) a growth process for carbon nanotube cooling fins to enhance cooling in a fixed medium, and 3) an understanding of the antagonistic architecture to produce increased frequency in a controllable manner. To enable applications requiring predictability for positioning and complex control, a thermodynamic model for antagonistic SMA was derived to account for inertial, slack, boiling, friction, and convective effects. Using the model, a series of simulation studies provided design insight on the effect of operating environment, driving signal, and environmental conditions so that the generic actuation system can be utilized in a wide variety of applications beyond tremor cancellation. If high forces are required in such applications, stability issues can arise, which were addressed in experimental shakedown research that broadens the high-stress SMA design space. The technology enabled by this dissertation was demonstrated in a working Active Cancellation of Tremor (ACT) prototype that produced 71% RMS cancellation of human tremor. The cancellation results show significant improvement over the current state of the art by providing intuitive, lightweight, compact hand-held tremor cancellation that is a promising solution to numerous assistive applications in medical, military, and manufacturing sectors.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/76010/1/apathak_1.pd
    • …
    corecore