406 research outputs found

    Dual-band dual linear to circular polarization converter in transmission mode-application to K/Ka-band satellite communications

    Get PDF
    Many wireless communication applications such as satellite communications use circularly polarized (CP) signals, with the requirement for easy switching of the polarization sense between uplink and downlink. Specifically, in satellite communications, the trend is also to move to higher frequencies and integrate the receiving and transmitting antennas in one dual-band terminal. However, these simultaneous demands make the design and fabrication of the composing parts very challenging. We propose, here, a dual-band dual-linear polarization (LP)-to-CP converter that works in the transmission mode. The working principle of this polarizer is explained through an example for Ka-band satellite communications at 19.7–20.2 and 29.5–30 GHz. The LP-to-CP converter is a single panel composed of identical unit cells with a thickness of only 1.05 mm and a size of 5.3 mm ×5.3 mm. Due to its operation in the transmission mode, the polarizer can be combined with a simple dual-band dual-LP antenna to obtain the desired dual-band dual-CP single antenna. However, the unique property of this polarizer is yet the fact that it converts a given LP wave, e.g., x-polarization, to orthogonal CP waves at the two nonadjacent frequency bands, e.g., left-handed CP at lower band and right-handed CP at higher band. The polarizer is tested both with 20 and 30 GHz LP rectangular horns to illuminate a dual-band transmit array (TA) to obtain wide-angle steering of CP beams. The performance of the polarizer and its association with the TA is evaluated through simulation and measurements. We also present design guidelines for this type of polarizer.info:eu-repo/semantics/acceptedVersio

    Millimeter-Wave Transmitarray and Reflectarray Antennas for Communications Systems

    Get PDF

    Ka-Band Linear to Circular Polarization Converter Based on Multilayer Slab With Broadband Performance

    Get PDF
    In this paper, a Ka-band polarization converter is presented, which is based on multilayer slab. In order to improve impedance matching, metallic circular traces are printed periodically on each dielectric multilayer slab. Simulated results of the polarizer show that it can transform linearly polarized (LP) to circularly polarized (CP) fields over a frequency band from 23 to 35GHz (42%) with an insertion loss less than 0.5 dB. The transmitted CP wave by the polarizer is approximately robust under oblique illuminations. The polarizer is fabricated and measured by a wideband horn antenna satisfying the simulated results. Next, in order to design a high-gain CP structure around 30 GHz, an 8-element LP array antenna with Chebyshev tapered distribution is designed and integrated with the polarizer. Obviously, the antenna limits the overall bandwidth (nearly 28 to 31.5 GHz) due to the narrowband nature of the LP antenna array. When the polarizer is illuminated by an incident LP wave, the two linear components of the transmitted wave with approximately equal amplitudes and 90° phase difference on the frequency band of interest are produced. Experimental results of the proposed structure show a pure CP with a gain of 13 dBi at 30 GHz, which can be suitable for millimeter wave communication

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Circularly polarized and reconfigurable frequency selective surface based transmit array antenna for x-band applications

    Get PDF
    Transmitarray (TA) antennas have attracted much attention in recent years due to their number of applications. These include the 5G/6G mobile networks and satellite communication systems for the microwave frequency range. The various satellite applications require high-gain antennas with polarization agility. Also, the state-ofthe- art smart communication systems require reconfigurable antennas allowing the frequency and beam switching according to the application requirements. In this research, three different TA antennas have been studied and designed for X-band applications which are high gain and wideband TA antenna, circularly polarized TA antenna, frequency and beam reconfigurable TA antenna. For the first design, two Frequency-Selective Surface (FSS) unit cells which include Double Square Ring with Center Patch (DSR-CP) and Split Ring Resonator (SRR), have been applied to increase the antenna gain and bandwidth. The optimized unit cell structure shows that a fourlayer configuration could provide maximum phase range with low insertion losses. The complete DSR-CP TA consisting of 121 elements has produced an impedance bandwidth of 33.3% with a peak gain value of 20.4 dBi and 1-dB gain for bandwidth of 10%. SRR-based TA achieved the impedance bandwidth of 35% with a peak gain value of 21.9 dBi and 11.6% 1-dB gain bandwidth. A circularly polarized TA using a Meander Line Polarizer (MLP) superstrate has been studied and presented. The MLP unit cell was simulated and optimized at 12 GHz, having 900 phase difference between the two orthogonal E-field components, Ex and Ey. The final prototype measurement results show that a low axial ratio of 1.89 and 20.17 dBi gain at 11.2 GHz has been obtained. Finally, the last part of the research focused on the frequency and beam reconfigurable TA antenna. A U-shape superstrate layer has been added to introduce frequency selectivity in front of the horn antenna that acts as a bandpass filter. Then, by varying the strip length of the U-shape unit cell, the antenna frequency can be reconfigured from 8.5 GHz to 11.2 GHz. On the other hand, a new active TA unit cell equipped with four switchable strips using Positive Intrinsic Negative (PIN) diodes has been employed to achieve beam reconfigurable TA antenna. Thus, the antenna beam can be tilted by controlling the PIN diodes ON and OFF switching states. Results show that a full-beam switching range of 43.20 has been obtained. In conclusion, this research has successfully presented three new TA antenna designs, which are highly potential for the X-band applications

    Development of conformal reconfigurable metamaterial-based antennas

    Get PDF
    Antennas are vital components of any wireless communication device. There has been a wide demand for novel flexible and reconfigurable wireless devices as a result of the rising user applications. This thesis presents the design of flexible low-cost antennas using metamaterial loadings with performance characteristics that can be reconfigured by employing microfluidics. In applications such as biomedicine, this work presents an inkjet-printed dipole antenna on flexible Kapton-foam substrate to be used on lossy host structures. The concept of Artificial Magnetic Conductor (AMC) unit cells is investigated for best impedance and gain performance. When integrated with a dipole radiator, the fabricated AMC-backed antenna maintains broadside radiation with gains of up to 4.8 dBi under planar and bending conditions, and on a lossy blood bag. Antenna reconfiguration is then proposed by developing reconfigurable metasurface loadings implementing continuous-flow microfluidics and digital microfluidics. In the latter technique, a frequency reconfigurable AMC is designed using a pixelized approach with liquid metal interconnects. Simulations show that the pixelized design demonstrates switching by electric actuation between 2.45 GHz and 5 GHz depending on the state of the liquid metal interconnects. On the other hand, a multifunctional reconfigurable metasurface based on liquid metal injection (pressure) is presented. The reflective metasurface formed by two switchable microfluidic layers ??? top layer comprising an array of meandered half-rings and the lower layer, straight meander lines - can be reconfigured into four polarization states. The proposed metasurface becomes a reflector with emptied channels, whereas exhibits linear to cross polarization conversion (or linear to circular polarization conversion) properties when the top (or bottom) layer is filled with liquid metal alloy. The experimental results confirm the simulation results over the 8 GHz to 12 GHz test band. The compactness, structural flexibility and multifunctionality of the proposed designs make them suitable candidates for modern integrated antenna array systems

    Synthesis Technique of Thickness-Customizable Multilayered Frequency Selective Surface for Plasma-Based Electromagnetic Structures

    Get PDF
    This dissertation provides a synthesis technique for the design of thickness-customizable high-order (N ≥ 2) bandpass frequency selective surface (FSS) and its application in realizing versatile multi-layered FSS and absorbers. Admittance inverters layers are used to synthesize the transfer response of the filter given desired characteristics such as filter type, center frequency, and bandwidth. These inverter layers are essentially electromagnetic coupling interlayers that can be adjusted to customize the thickness of multilayered FSS without degrading the desired filter performance. A generalized equivalent circuit model is used to provide physical insights of the proposed design. This synthesis technique is adopted to deliver a versatile implementation capability of high-order FSS filters using various dielectric spacers with arbitrary thicknesses. Such technique enables the realization of spatial filters with variable size, while maintaining the desired filter response. To highlight the significance of the proposed synthesis technique, its concept is applied to two practical problems including the design of compact switchable FSS and adaptive/tunable microwave absorbers as it may allow simpler integration of active components that require specific physical dimensions. In the first practical problem, the feasibility of deploying plasma switchable compact spatial filter in harsh electromagnetic radiation environments is investigated. The proposed FSS integrates contained plasma (plasma-shells) as active tuning elements. These ceramic, gas-encapsulating shells are ideal for high-power microwave and electromagnetic pulse protection because they are rugged, hermetic, operable at extreme temperatures, and insensitive to ionizing radiation. A 2D periodic second-order switchable spatial filter is implemented. It is composed of electrically small Jerusalem cross structures embedded with discrete plasma shells strategically located to effectively switch the transfer function of the filter. This technique is used to realize compact low profile second order band pass spatial filter operating at S-band. It also has the ability to switch its transfer function within 20 to 100 ns while enabling in-band shielding protection for aerospace or terrestrial electromagnetic systems subjected to high power microwave energy (HPME) and high electromagnetic pulse (HEMP) in harsh space environment. Experimental results are shown to be in good agreement with simulation results. The second practical problem is addressed by deploying a large-scale adaptable compressed Jaumann absorber for harsh and dynamic electromagnetic environments. The multilayered conductor-backed absorbers are realized by integrating ceramic gas-encapsulating shells and a closely coupled resonant layer that also serves as a biasing electrode to sustain the plasma. These active frequency selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-power-dependent inductor, providing a dynamic tuning response of the absorption spectral band. To study the power handling capability of the tunable absorber, dielectric and air breakdowns within the device are numerically emulated using electromagnetic simulation by quantifying the maximum field enhancement factor (MFEF). Furthermore, a comprehensive thermal analysis using a simulation method that couples electromagnetics and heat transfer is performed for the absorber under high power continuous microwave excitations. The maximum power level handling capability of the microwave absorber has been numerically predicted and validated experimentally

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore