41 research outputs found

    Towards Business-to-IT Alignment in the Cloud

    Get PDF
    Cloud computing offers a great opportunity for business process (BP) flexibility, adaptability and reduced costs. This leads to realising the notion of business process as a service (BPaaS), i.e., BPs offered on-demand in the cloud. This paper introduces a novel architecture focusing on BPaaS design that includes the integration of existing state-of-the-art components as well as new ones which take the form of a business and a syntactic matchmaker. The end result is an environment enabling to transform domain-specific BPs into executable workflows which can then be made deployable in the cloud so as to become real BPaaSes

    Network service registration based on role-goal-process-service meta-model in a P2P network

    Get PDF
    Service composition-based network software customisation is currently a research hotspot in the field of software engineering. A key problem of the hotspot is how to efficiently discover services distributed over the Internet. In the service oriented architecture, service discovery suffers from the performance bottleneck of centralised universal description discovery and integration (UDDI), and inaccurate matching of service semantics. In this study, the authors describe a novel method for service labelling, registration and discovery, which is based on the role-goal-process-service meta-model. This approach enables ones to achieve accurate matching of service semantics by extending web service description language with RGP demand-information. The authors also suggest a peer-to-peer (P2P)-based architecture of service discovery to address the issues in the UDDI bottleneck and the complexity of semantic computation. By adopting the proposed approach, an experiment prototype system has been designed and implemented in Beijing municipal transportation system. The experimental results show the proposed approach is effective in addressing the aforementioned problems

    Service recommendation and selection in centralized and decentralized environments.

    Get PDF
    With the increasing use of web services in everyday tasks we are entering an era of Internet of Services (IoS). Service discovery and selection in both centralized and decentralized environments have become a critical issue in the area of web services, in particular when services having similar functionality but different Quality of Service (QoS). As a result, selecting a high quality service that best suits consumer requirements from a large list of functionally equivalent services is a challenging task. In response to increasing numbers of services in the discovery and selection process, there is a corresponding increase of service consumers and a consequent diversity in Quality of Service (QoS) available. Increases in both sides leads to a diversity in the demand and supply of services, which would result in the partial match of the requirements and offers. Furthermore, it is challenging for customers to select suitable services from a large number of services that satisfy consumer functional requirements. Therefore, web service recommendation becomes an attractive solution to provide recommended services to consumers which can satisfy their requirements.In this thesis, first a service ranking and selection algorithm is proposed by considering multiple QoS requirements and allowing partially matched services to be counted as a candidate for the selection process. With the initial list of available services the approach considers those services with a partial match of consumer requirements and ranks them based on the QoS parameters, this allows the consumer to select suitable service. In addition, providing weight value for QoS parameters might not be an easy and understandable task for consumers, as a result an automatic weight calculation method has been included for consumer requirements by utilizing distance correlation between QoS parameters. The second aspect of the work in the thesis is the process of QoS based web service recommendation. With an increasing number of web services having similar functionality, it is challenging for service consumers to find out suitable web services that meet their requirements. We propose a personalised service recommendation method using the LDA topic model, which extracts latent interests of consumers and latent topics of services in the form of probability distribution. In addition, the proposed method is able to improve the accuracy of prediction of QoS properties by considering the correlation between neighbouring services and return a list of recommended services that best satisfy consumer requirements. The third part of the thesis concerns providing service discovery and selection in a decentralized environment. Service discovery approaches are often supported by centralized repositories that could suffer from single point failure, performance bottleneck, and scalability issues in large scale systems. To address these issues, we propose a context-aware service discovery and selection approach in a decentralized peer-to-peer environment. In the approach homophily similarity was used for bootstrapping and distribution of nodes. The discovery process is based on the similarity of nodes and previous interaction and behaviour of the nodes, which will help the discovery process in a dynamic environment. Our approach is not only considering service discovery, but also the selection of suitable web service by taking into account the QoS properties of the web services. The major contribution of the thesis is providing a comprehensive QoS based service recommendation and selection in centralized and decentralized environments. With the proposed approach consumers will be able to select suitable service based on their requirements. Experimental results on real world service datasets showed that proposed approaches achieved better performance and efficiency in recommendation and selection process.N/

    A Review on Framework and Quality of Service Based Web Services Discovery

    Get PDF
    Selection of Web services (WSs) is one of the most important steps in the application of different types of WSs such as WS composition systems and the Universal Description, Discovery, and Integration (UDDI) registries. The more available these WSs on the Internet are, the wider the number of these services whose functions match the various service requests is. Selecting WSs with higher quality largely depends on the quality of service (QoS) since it plays a significant role in selecting such services. In achieving this selection of the best WSs, the potential WSs are ranked according to the user’s necessities on service quality. In many cases, the value of QoS ontology is realized by its support for nonfunctional features of WSs. This ontology is also capable of providing solutions to the interoperability of QoS description. Moreover, based on the QoS ontology, it becomes more possible to develop a framework of semantic WS discovery. The framework enhances the automatic discovery of WSs and can improve the users’ efficiency in finding the best web services. Thus, Web Services are software functionalities publish and accessible through the Internet. Different protocols and web mechanism have been defined to access these Services

    Semantics-aware planning methodology for automatic web service composition

    Get PDF
    Service-Oriented Computing (SOC) has been a major research topic in the past years. It is based on the idea of composing distributed applications even in heterogeneous environments by discovering and invoking network-available Web Services to accomplish some complex tasks when no existing service can satisfy the user request. Service-Oriented Architecture (SOA) is a key design principle to facilitate building of these autonomous, platform-independent Web Services. However, in distributed environments, the use of services without considering their underlying semantics, either functional semantics or quality guarantees can negatively affect a composition process by raising intermittent failures or leading to slow performance. More recently, Artificial Intelligence (AI) Planning technologies have been exploited to facilitate the automated composition. But most of the AI planning based algorithms do not scale well when the number of Web Services increases, and there is no guarantee that a solution for a composition problem will be found even if it exists. AI Planning Graph tries to address various limitations in traditional AI planning by providing a unique search space in a directed layered graph. However, the existing AI Planning Graph algorithm only focuses on finding complete solutions without taking account of other services which are not achieving the goals. It will result in the failure of creating such a graph in the case that many services are available, despite most of them being irrelevant to the goals. This dissertation puts forward a concept of building a more intelligent planning mechanism which should be a combination of semantics-aware service selection and a goal-directed planning algorithm. Based on this concept, a new planning system so-called Semantics Enhanced web service Mining (SEwsMining) has been developed. Semantic-aware service selection is achieved by calculating on-demand multi-attributes semantics similarity based on semantic annotations (QWSMO-Lite). The planning algorithm is a substantial revision of the AI GraphPlan algorithm. To reduce the size of planning graph, a bi-directional planning strategy has been developed

    A graph-based framework for optimal semantic web service composition

    Get PDF
    Web services are self-described, loosely coupled software components that are network-accessible through standardized web protocols, whose characteristics are described in XML. One of the key promises of Web services is to provide better interoperability and to enable a faster integration between systems. In order to generate robust service oriented architectures, automatic composition algorithms are required in order to combine the functionality of many single services into composite services that are able to respond to demanding user requests, even when there is no single service capable of performing such task. Service composition consists of a combination of single services into composite services that are executed in sequence or in a different order, imposed by a set of control constructions that can be specified using standard languages such as OWL-s or BPEL4WS. In the last years several papers have dealt with composition of web services. Some approaches treat the service composition as a planning problem, where a sequence of actions lead from a initial state to a goal state. However, most of these proposals have some drawbacks: high complexity, high computational cost and inability to maximize the parallel execution of web services. Other approaches consider the problem as a graph search problem, where search algorithms are applied over a web service dependency graph in order to find a solution for a particular request. These proposals are simpler than their counterparts and also many can exploit the parallel execution of web services. However, most of these approaches rely on very complex dependency graphs that have not been optimized to remove data redundancy, which may negatively affect the overall performance and scalability of these techniques in large service registries. Therefore, it is necessary to identify, characterize and optimize the different tasks involved in the automatic service composition process in order to develop better strategies to efficiently obtain optimal solutions. The main goal of this dissertation is to develop a graph-based framework for automatic service composition that generate optimal input-output based compositions not only in terms of complexity of the solutions, but also in terms of overall quality of service solutions. More specifically, the objectives of this thesis are: (1) Analysis of the characteristics of services and compositions. The aim of this objective is to characterize and identify the main steps that are part for the service composition process. (2) Framework for automatic graph-based composition. This objective will focus on developing a framework that enables the efficient input-output based service composition, exploring the integration with other tasks that are part of the composition process, such as service discovery. (3) Development of optimal algorithms for automatic service composition. This objective focuses on the development of a set of algorithms and optimization techniques for the generation of optimal compositions, optimizing the complexity of the solutions and the overall Quality-of- Service. (4) Validation of the algorithms with standard datasets so they can be compared with other proposals

    Context-aware task scheduling in distributed computing systems

    Full text link
    These days, the popularity of technologies such as machine learning, augmented reality, and big data analytics is growing dramatically. This leads to a higher demand of computational power not only for IT professionals but also for ordinary device users who benefit from new applications. At the same time, the computational performance of end-user devices increases to meet the demands of these resource-hungry applications. As a result, there is a coexistence of a huge demand of computational power on the one side and a large pool of computational resources on the other side. Bringing these two sides together is the idea of computational resource sharing systems which allow applications to forward computationally intensive workload to remote resources. This technique is often used in cloud computing where customers can rent computational power. However, we argue that not only cloud resources can be used as offloading targets. Rather, idle CPU cycles from end-user administered devices at the edge of the network can be spontaneously leveraged as well. Edge devices, however, are not only heterogeneous in their hardware and software capabilities, they also do not provide any guarantees in terms of reliability or performance. Does it mean that either the applications that require further guarantees or the unpredictable resources need to be excluded from such a sharing system? In this thesis, we propose a solution to this problem by introducing the Tasklet system, our approach for a computational resource sharing system. The Tasklet system supports computation offloading to arbitrary types of devices, including stable cloud instances as well as unpredictable end-user owned edge resources. Therefore, the Tasklet system is structured into multiple layers. The lowest layer is a best-effort resource sharing system which provides lightweight task scheduling and execution. Here, best-effort means that in case of a failure, the task execution is dropped and that tasks are allocated to resources randomly. To provide execution guarantees such as a reliable or timely execution, we add a Quality of Computation (QoC) layer on top of the best-effort execution layer. The QoC layer enforces the guarantees for applications by using a context-aware task scheduler which monitors the available resources in the computing environment and performs the matchmaking between resources and tasks based on the current state of the system. As edge resources are controlled by individuals, we consider the fact that these users need to be able to decide with whom they want to share their resources and for which price. Thus, we add a social layer on top of the system that allows users to establish friendship connections which can then be leveraged for social-aware task allocation and accounting of shared computation

    Correctness of services and their composition

    Get PDF
    We study correctness of services and their composition and investigate how the design of correct service compositions can be systematically supported. We thereby focus on the communication protocol of the service and approach these questions using formal methods and make contributions to three scenarios of SOC.Wir studieren die Korrektheit von Services und Servicekompositionen und untersuchen, wie der Entwurf von korrekten Servicekompositionen systematisch unterstützt werden kann. Wir legen dabei den Fokus auf das Kommunikationsprotokoll der Services. Mithilfe von formalen Methoden tragen wir zu drei Szenarien von SOC bei

    Correctness of services and their composition

    Get PDF
    We study correctness of services and their composition and investigate how the design of correct service compositions can be systematically supported. We thereby focus on the communication protocol of the service and approach these questions using formal methods and make contributions to three scenarios of SOC.Wir studieren die Korrektheit von Services und Servicekompositionen und untersuchen, wie der Entwurf von korrekten Servicekompositionen systematisch unterstützt werden kann. Wir legen dabei den Fokus auf das Kommunikationsprotokoll der Services. Mithilfe von formalen Methoden tragen wir zu drei Szenarien von SOC bei
    corecore