148 research outputs found

    Secure Automatic Speaker Verification Systems

    Get PDF
    The growing number of voice-enabled devices and applications consider automatic speaker verification (ASV) a fundamental component. However, maximum outreach for ASV in critical domains e.g., financial services and health care, is not possible unless we overcome security breaches caused by voice cloning, and replayed audios collectively known as the spoofing attacks. The audio spoofing attacks over ASV systems on one hand strictly limit the usability of voice-enabled applications; and on the other hand, the counterfeiter also remains untraceable. Therefore, to overcome these vulnerabilities, a secure ASV (SASV) system is presented in this dissertation. The proposed SASV system is based on the concept of novel sign modified acoustic local ternary pattern (sm-ALTP) features and asymmetric bagging-based classifier-ensemble. The proposed audio representation approach clusters the high and low-frequency components in audio frames by normally distributing frequency components against a convex function. Then, the neighborhood statistics are applied to capture the user specific vocal tract information. This information is then utilized by the classifier ensemble that is based on the concept of weighted normalized voting rule to detect various spoofing attacks. Contrary to the existing ASV systems, the proposed SASV system not only detects the conventional spoofing attacks (i.e. voice cloning, and replays), but also the new attacks that are still unexplored by the research community and a requirement of the future. In this regard, a concept of cloned replays is presented in this dissertation, where, replayed audios contains the microphone characteristics as well as the voice cloning artifacts. This depicts the scenario when voice cloning is applied in real-time. The voice cloning artifacts suppresses the microphone characteristics thus fails replay detection modules and similarly with the amalgamation of microphone characteristics the voice cloning detection gets deceived. Furthermore, the proposed scheme can be utilized to obtain a possible clue against the counterfeiter through voice cloning algorithm detection module that is also a novel concept proposed in this dissertation. The voice cloning algorithm detection module determines the voice cloning algorithm used to generate the fake audios. Overall, the proposed SASV system simultaneously verifies the bonafide speakers and detects the voice cloning attack, cloning algorithm used to synthesize cloned audio (in the defined settings), and voice-replay attacks over the ASVspoof 2019 dataset. In addition, the proposed method detects the voice replay and cloned voice replay attacks over the VSDC dataset. Rigorous experimentation against state-of-the-art approaches also confirms the robustness of the proposed research

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    Machine Learning Mitigants for Speech Based Cyber Risk

    Get PDF
    Statistical analysis of speech is an emerging area of machine learning. In this paper, we tackle the biometric challenge of Automatic Speaker Verification (ASV) of differentiating between samples generated by two distinct populations of utterances, those of an authentic human voice and those generated by a synthetic one. Solving such an issue through a statistical perspective foresees the definition of a decision rule function and a learning procedure to identify the optimal classifier. Classical state-of-the-art countermeasures rely on strong assumptions such as stationarity or local-stationarity of speech that may be atypical to encounter in practice. We explore in this regard a robust non-linear and non-stationary signal decomposition method known as the Empirical Mode Decomposition combined with the Mel-Frequency Cepstral Coefficients in a novel fashion with a refined classifier technique known as multi-kernel Support Vector machine. We undertake significant real data case studies covering multiple ASV systems using different datasets, including the ASVSpoof 2019 challenge database. The obtained results overwhelmingly demonstrate the significance of our feature extraction and classifier approach versus existing conventional methods in reducing the threat of cyber-attack perpetrated by synthetic voice replication seeking unauthorised access

    Securing Autonomous Vehicles Against GPS Spoofing Attacks: A Deep Learning Approach

    Get PDF
    With the rapid advancement of technology and multimedia systems, ensuring security has become a critical concern. Connected and Autonomous Vehicles (CAVs) are vulnerable to various hacking techniques, including jamming and spoofing. Global Positioning System (GPS) location spoofing poses a significant threat to CAVs, compromising their security and potentially endangering pedestrians and drivers. To address this issue, this research proposes a novel methodology that uses deep learning (DL) algorithms, such as Convolutional Neural Networks (CNN), and machine learning (ML) algorithms, such as Support Vector Machine (SVM), to protect CAVs from GPS location spoofing attacks. The proposed solution is validated using real-time simulations in the CARLA simulator, and extensive analysis of different learning algorithms is conducted to identify the most suitable approach across three distinct trajectories. Training and testing data include GPS coordinates, spoofed coordinates, and localization algorithm values. The proposed machine learning algorithm achieved 99% and 96% accuracy for the best and worst case scenarios, respectively. In case of deep learning, it achieved as high as 99% for best and 82% for the worst case scenario

    Spoofing Detection in Voice Biometrics: Cochlear Modelling and Perceptually Motivated Features

    Full text link
    The automatic speaker verification (ASV) system is one of the most widely adopted biometric technology. However, ASV is vulnerable to spoofing attacks that can significantly affect its reliability. Among the different variants of spoofing attacks, replay attacks pose a major threat as they do not require any expert knowledge to implement and are difficult to detect. The primary focus of this thesis is on understanding and developing biologically inspired models and techniques to detect replay attacks. This thesis develops a novel framework for implementing an active cochlear filter model as a frontend spectral analyser for spoofing attack detection to leverage the remarkable sensitivity and selectivity of the mammalian auditory system over a broad range of intensities and frequencies. In particular, the developed model aims to mimic the active mechanism in the cochlea, enabling sharp frequency tuning and level-dependent compression, which amplifies and tune to low energy signal to make a broad dynamic range of signals audible. Experimental evaluations of the developed models in the context of replay detection systems exhibit a significant performance improvement, highlighting the potential benefits of the use of biologically inspired front ends. In addition, since replay detection relies on the discerning channel characteristics and the effect of the acoustic environment, acoustic cues essential for speech perception such as amplitude- and frequency-modulation (AM, FM) features are also investigated. Finally, to capture discriminative cues present in the temporal domain, the temporal masking psychoacoustic phenomenon in auditory processing is exploited, and the usefulness of the masking pattern is investigated. This led to a novel feature parameterisation which helps improve replay attack detection

    Deep Generative Variational Autoencoding for Replay Spoof Detection in Automatic Speaker Verification

    Get PDF
    Automatic speaker verification (ASV) systems are highly vulnerable to presentation attacks, also called spoofing attacks. Replay is among the simplest attacks to mount - yet difficult to detect reliably. The generalization failure of spoofing countermeasures (CMs) has driven the community to study various alternative deep learning CMs. The majority of them are supervised approaches that learn a human-spoof discriminator. In this paper, we advocate a different, deep generative approach that leverages from powerful unsupervised manifold learning in classification. The potential benefits include the possibility to sample new data, and to obtain insights to the latent features of genuine and spoofed speech. To this end, we propose to use variational autoencoders (VAEs) as an alternative backend for replay attack detection, via three alternative models that differ in their class-conditioning. The first one, similar to the use of Gaussian mixture models (GMMs) in spoof detection, is to train independently two VAEs - one for each class. The second one is to train a single conditional model (C-VAE) by injecting a one-hot class label vector to the encoder and decoder networks. Our final proposal integrates an auxiliary classifier to guide the learning of the latent space. Our experimental results using constant-Q cepstral coefficient (CQCC) features on the ASVspoof 2017 and 2019 physical access subtask datasets indicate that the C-VAE offers substantial improvement in comparison to training two separate VAEs for each class. On the 2019 dataset, the C-VAE outperforms the VAE and the baseline GMM by an absolute 9-10% in both equal error rate (EER) and tandem detection cost function (t-DCF) metrics. Finally, we propose VAE residuals --- the absolute difference of the original input and the reconstruction as features for spoofing detection. The proposed frontend approach augmented with a convolutional neural network classifier demonstrated substantial improvement over the VAE backend use case
    • …
    corecore