13,361 research outputs found

    Detection of Plasmodium falciparum male and female gametocytes and determination of parasite sex ratio in human endemic populations by novel, cheap and robust RTqPCR assays

    Get PDF
    The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Molecular evidence for zoonotic transmission of Giardia duodenalis among dairy farm workers in West Bengal, India

    Get PDF
    No study in the past has examined the genetic diversity and zoonotic potential of Giardia duodenalis in dairy cattle in India. To assess the importance of these animals as a source of human G. duodenalis infections and determine the epidemiology of bovine giardiasis in India, fecal samples from 180 calves, heifers and adults and 51 dairy farm workers on two dairy farms in West Bengal, India were genotyped by PCR-RFLP analysis of the Ξ²-giardin gene of G. duodenalis followed by DNA sequencing of the nested PCR products. The overall prevalence of G. duodenalis in cattle was 12.2% (22/180), the infection being more prevalent in younger calves than in adult cattle. Zoonotic G. duodenalis Assemblage A1 was identified in both calves and workers although the most prevalent genotype detected in cattle was a novel Assemblage E subgenotype. These findings clearly suggest that there is a potential risk of zoonotic transmission of G. duodenalis infections between cattle and humans on dairy farms in India

    Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction

    Get PDF
    Background: In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. Methods: The study was carried out in OrÑn, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. Results: qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1 %) and N. americanus (36.4 %) infections. There were 48.6 % of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P∈<∈0.001) respectively. qPCR outperformed microscopy by the largest margin in G. lamblia infections (63.6 % versus 8.1 %, P∈<∈0.05). Polyparasitism was detected more often by qPCR compared to microscopy (64.7 % versus 24.2 %, P∈<∈0.05). Conclusions: Multi-parallel qPCR is a quantitative molecular diagnostic method for common intestinal parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high prevalence of intestinal parasites in a peri-urban area. These results will contribute to more accurate epidemiological survey, refined treatment strategies on a public scale, and better health outcomes in endemic settings.Fil: Cimino, Rubén Oscar. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jeun, Rebecca. Baylor College Of Medicine; Estados UnidosFil: Juarez, Marisa. Universidad Nacional de Salta; ArgentinaFil: Cajal, Pamela S.. Universidad Nacional de Salta; ArgentinaFil: Vargas Flores, Paola Andrea. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Echazú, Adriana. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bryan, Patricia E.. Baylor College Of Medicine; Estados UnidosFil: Nasser, Julio Rubén. Universidad Nacional de Salta; ArgentinaFil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mejia, Rojelio. Baylor College Of Medicine; Estados Unidos. Universidad Nacional de Salta; Argentin

    Development of a species-specific coproantigen ELISA for human taenia solium taeniasis

    Get PDF
    Taenia solium causes human neurocysticercosis and is endemic in underdeveloped countries where backyard pig keeping is common. Microscopic fecal diagnostic methods for human T. solium taeniasis are not very sensitive, and Taenia saginata and Taenia solium eggs are indistinguishable under the light microscope. Coproantigen (CoAg) ELISA methods are very sensitive, but currently only genus (Taenia) specific. This paper describes the development of a highly species-specific coproantigen ELISA test to detect T. solium intestinal taeniasis. Sensitivity was maintained using a capture antibody of rabbit IgG against T. solium adult whole worm somatic extract, whereas species specificity was achieved by utilization of an enzyme-conjugated rabbit IgG against T. solium adult excretory-secretory (ES) antigen. A known panel of positive and negative human fecal samples was tested with this hybrid sandwich ELISA. The ELISA test gave 100% specificity and 96.4% sensitivity for T. solium tapeworm carriers (N = 28), with a J index of 0.96. This simple ELISA incorporating anti-adult somatic and anti-adult ES antibodies provides the first potentially species-specific coproantigen test for human T. solium taeniasis

    Prospective evaluation of BDProbeTec strand displacement amplification (SDA) system for diagnosis of tuberculosis in non-respiratory and respiratory samples.

    Get PDF
    Nucleic acid amplification techniques (NAATs) have been demonstrated to make significant improvements in the diagnosis of tuberculosis (TB), particularly in the time to diagnosis and the diagnosis of smear-negative TB. The BD ProbeTec strand displacement amplification (SDA) system for the diagnosis of pulmonary and non-pulmonary tuberculosis was evaluated. A total of 689 samples were analysed from patients with clinically suspected TB. Compared with culture, the sensitivity and specificity for pulmonary samples were 98 and 89 %, and against final clinical diagnosis 93 and 92 %, respectively. This assay has undergone limited evaluation for non-respiratory samples and so 331 non-respiratory samples were tested, identifying those specimens that were likely to yield a useful result. These were CSF (n = 104), fine needle aspirates (n = 64) and pus (n = 41). Pleural fluid (n = 47) was identified as a poor specimen. A concern in using the SDA assay was that low-positive samples were difficult to interpret; 7.8 % of specimens fell into this category. Indeed, 64 % of the discrepant results, when compared to final clinical diagnosis, could be assigned as low-positive samples. Specimen type did not predict likelihood of a sample being in the low-positive zone. Although the manufacturers do not describe the concept of a low-positive zone, we have found that it aids clinical diagnosis

    A reiterative method for calculating the early bactericidal activity of antituberculosis drugs.

    No full text
    Studies of early bactericidal activity (EBA) are important in the rapid evaluation of new antituberculosis drugs. Historically, these have concentrated on the log fall in the viable count in sputum during the first 48 hours of therapy. In this paper, we provide a mathematical model that suggests that the viable count in sputum follows an exponential decay curve with the equation V = S + Me(-kt) (where V is the viable count, M the population of bacteria susceptible to the test drug, S the population susceptible only to sterilizing agents, t the day of sputum collection as related to start of therapy, k the rate constant for the bacteria killed each day, and e the Napierian constant). We demonstrate that data from clinical trials fits the exponential decay model. We propose that future EBA studies should be performed by measuring daily quantitative counts for at least 5 days. We also propose that the comparison of the early bactericidal activity of antituberculosis drugs should be evaluated using the time taken to reduce the viable count by 50% (vt(50)). A further reiterative refinement following a rule set based on statistically the best fit to the exponential decay model is described that will allow investigators to identify anomalous results and thus enhance the accuracy in measuring early bactericidal activity
    • …
    corecore