221 research outputs found

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Slot Antennas - A Comprehensive Survey

    Get PDF
    Wireless Communication has found a rapid growth over the past decades starting from handheld devices to spacecraft applications. The efficient operation of all such wireless devices depends on the design and proper working of the transmitting and receiving antennas. Microstrip antennas are most commonly preferred for major wireless applications, because of their miniaturized structure, ease of fabrication, low power consumption, flexibility with printed circuit board, low profile, light weight, effective return loss and better radiation properties. This paper provides a comprehensive survey on microstrip antennas whose performance is improved to meet the increasing demand, by introducing slots of different shapes and sizes. These slots of various kinds helps in obtaining wider bandwidth over the C and Ultrawideban

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 2: Metamaterials and Many More

    Get PDF
    This two‐part article presents a review of different techniques of mutual coupling (MC) reduction. MC reduction is a primary concern while designing a compact multiple‐input‐multiple‐output (MIMO) antenna where the separation between the antennas is less than λ0/2, that is, half of the free‐space wavelength. The negative permittivity and permeability of artificially created materials/structures (Metamaterials) significantly help reduce MC among narrow‐band compact MIMO antenna design elements. In this part two of the review paper, we will discuss techniques: Metamaterials; Split‐Ring‐Resonator; Complementary‐Split‐Ring‐Resonator; Frequency Selective Surface, Metasurface, Electromagnetic Band Gap structure, Decoupling and Matching network, Neutralization line, Cloaking Structures, Shorting vias and pins and few more

    Mutual Coupling Reduction Techniques between MIMO Antennas for UWB Applications

    Get PDF
    The recent research has proved that the Multiple-input-multiple-output (MIMO) systems can substantially increase the channel capacity by employing multiple antennas at both the transmitter and receiver, without increasing either transmitter power or bandwidth. Hence it is very much essential to know all the aspects of MIMO system. Usually, in any MIMO system the antenna design plays a major role in improving the system performance and channel capacity. The antenna bandwidth must support the wireless system for transmitting larger data rates. Also, the mutual coupling effect between the antennas must be taken into consideration, while designing an efficient MIMO system. The objective of this paper is to discuss various techniques to reduce mutual coupling of MIMO antennas for UWB application

    A Comprehensive Survey on “Various Decoupling Mechanisms With Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems”

    Get PDF
    Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the consequent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theoretical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on metamaterial (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna arrays can be enhanced by calibrating out the interferences digitally, however it is more efficient to apply decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), complementary split-ring resonators (CSRR), decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired By MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements using easily realizable and cost-effective decoupling configurations that have negligible consequence on the array’s characteristics such as bandwidth, gain and radiation efficiency, and physical footprint

    A Comprehensive Survey on 'Various Decoupling Mechanisms with Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems'

    Get PDF
    Nowadays synthetic aperture radar (SAR) and multiple-input-multiple-output (MIMO) antenna systems with the capability to radiate waves in more than one pattern and polarization are playing a key role in modern telecommunication and radar systems. This is possible with the use of antenna arrays as they offer advantages of high gain and beamforming capability, which can be utilized for controlling radiation pattern for electromagnetic (EM) interference immunity in wireless systems. However, with the growing demand for compact array antennas, the physical footprint of the arrays needs to be smaller and the consequent of this is severe degradation in the performance of the array resulting from strong mutual-coupling and crosstalk effects between adjacent radiating elements. This review presents a detailed systematic and theoretical study of various mutual-coupling suppression (decoupling) techniques with a strong focus on metamaterial (MTM) and metasurface (MTS) approaches. While the performance of systems employing antenna arrays can be enhanced by calibrating out the interferences digitally, however it is more efficient to apply decoupling techniques at the antenna itself. Previously various simple and cost-effective approaches have been demonstrated to effectively suppress unwanted mutual-coupling in arrays. Such techniques include the use of defected ground structure (DGS), parasitic or slot element, dielectric resonator antenna (DRA), complementary split-ring resonators (CSRR), decoupling networks, P.I.N or varactor diodes, electromagnetic bandgap (EBG) structures, etc. In this review, it is shown that the mutual-coupling reduction methods inspired By MTM and MTS concepts can provide a higher level of isolation between neighbouring radiating elements using easily realizable and cost-effective decoupling configurations that have negligible consequence on the arrays characteristics such as bandwidth, gain and radiation efficiency, and physical footprint

    Low-profile and closely spaced four-element mimo antenna for wireless body area networks

    Get PDF
    A compact four-element multiple-input multiple output (MIMO) antenna is proposed for medical applications operating at a 2.4 GHz ISM band. The proposed MIMO design occupies an overall volume of 26 mm × 26 mm × 0.8 mm. This antenna exhibits a good impedance matching at the operating frequency of the ISM band, whose performance attributes include: isolation around 25 dB, envelope correlation coefficient (ECC) less than 0.02, average channel capacity loss (CCL) less than 0.3 bits/s/Hz and diversity gain (DG) of around 10 dB. The average peak realized gain of the four-element MIMO antenna is 2.4 dBi with more than 77 % radiation efficiency at the frequency of interest (ISM 2.4 GHz). The compact volume and adequate bandwidth, as well as the good achieved gain, make this antenna a strong candidate for bio-medical wearable applications
    corecore