965 research outputs found

    Multi-agent control and operation of electric power distribution systems

    Get PDF
    This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship

    Generalized Regression Neural Network and Fitness Dependent Optimization: Application to energy harvesting of centralized TEG systems

    Get PDF
    The thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition, several maximum power points (MPPs) appear on the P/V curve. In multiple MPPs, the true global maximum power points (GMPP) are very important for optimum action. The existing conventional technologies have slow tracking speed, low productivity, and unwanted fluctuations in voltage curves. To overcome the TEG system behavior and shortcomings, A novel control technology for the TEG system is proposed, which utilizes the improved generalized regression neural network and fitness dependent optimization (GRNNFDO) to track the GMPP under dynamic operating conditions. Conventional TEG system control techniques are not likely to trace true GMPP. Our novel GRNNFDO can trace the true GMPP for NUTD and under varying temperature conditions In this article, some major contributions in the area of the TEG systems are investigated by solving the issues such as NUTD global maxima tracking, low efficiency of TEG module due to mismatch, and oscillations around optimum point. The results of GRNNFDO are compared with the Cuckoo-search algorithm (CSA), and grasshopper optimization (GHO) algorithm and particle swarm optimization (PSO) algorithm. Results of GRNNFDO are verified with experiments and authenticated with MATLAB/SIMULINK. The proposed GRNNFDO control technique generates up to 7% more energy than PSO and 60% fast-tracking than meta-heuristic algorithms

    Distribution network reconfiguration considering DGs using a hybrid CS-GWO algorithm for power loss minimization and voltage profile enhancement

    Get PDF
    This paper presents an implementation of the hybrid Cuckoo search and Grey wolf (CS-GWO) optimization algorithm for solving the problem of distribution network reconfiguration (DNR) and optimal location and sizing of distributed generations (DGs) simultaneously in radial distribution systems (RDSs). This algorithm is being used significantly to minimize the system power loss, voltage deviation at load buses and improve the voltage profile. When solving the high-dimensional datasets optimization problem using the GWO algorithm, it simply falls into an optimum local region. To enhance and strengthen the GWO algorithm searchability, CS algorithm is integrated to update the best three candidate solutions. This hybrid CS-GWO algorithm has a more substantial search capability to simultaneously find optimal candidate solutions for problem. Furthermore, to validate the effectiveness and performances of the proposed hybrid CS-GWO algorithm is being tested and evaluated for standard IEEE 33-bus and 69-bus RDSs by considering different scenarios

    A Novel Hybrid Prairie Dog Optimization Algorithm - Marine Predator Algorithm for Tuning Parameters Power System Stabilizer

    Get PDF
    The article presents the parameter tuning of the Power System Stabilizer (PSS) using the hybrid method. The hybrid methods proposed in this article are Praire Dog Optimization (PDO) and Marine Predator Algorithm (MPA). The proposed method can be called PDOMPA. In the PDOMPA method, the marine predator algorithm (MPA) is able to search around optimal individuals when updating population positions. MPA is used to make the exploration and exploitation stages of PDO more valid and accurate. PDO is an algorithm inspired by the life of prairie dogs. Prairie dogs are adapted to colonizing in burrows underground. Prairie dogs have daily habits of eating, observing for predators, establishing fresh burrows, or preserving existing ones. Meanwhile, MPA is a duplication of marine predator life which is modeled mathematically. In order to validate the performance of the PDOMPA method, this article presents a comparative simulation of the objective function and the transient response of PSS. This research uses validation by comparing with conventional methods, Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Marine Predator Algorithm (MPA), and Praire Dog Optimization (PDO). Based on the simulation results, PDOMPA presents fast convergence in some cases and shows optimal results compared to competitive algorithms. From the simulation results using load variations, it was found that the proposed method has the ability to reduce the average undershoot and overshoot of speed by 42.2% and 85.37% compared to the PSS-Lead Lag method. Meanwhile the average settling time value of speed is 50.7%

    Multi-Objective Optimization of Microgrids Based on Recent Metaheuristic Methods

    Get PDF
    As the technology develops in the modern world, the need for electrical energy has increased. Renewable energy sources have emerged as an alternative energy source to fossil energy sources. Micro grids are the hybrid energy sources for both renewable and non-renewable energy sources. The choice of the microgrid depends on meeting the supply and low cost requirements while avoiding environmental pollution. Therefore, emission, reliability and sizing of a micro grid have been investigated in the present study. In addition, Swallow Swarm Optimization (SSO) and Hybrid Particle Swallow Swarm Optimization (HPSSO) algorithms were not found in micro grid related optimization studies. Performance of SSO and HPSSO algorithms was also evaluated. Particle Swarm Optimization (PSO), SSO, and HPSSO were adjusted in this study as multi-objective optimization method for increasing the reliability, decreasing emission and sizing energy resources of a microgrid feeding a 10 MW residence. A microgrid consisting of 8 MW solar panel, 4,5 MW wind turbine, 15 MW diesel generator, and 4 MW battery has been taken into consideration. The efficiencies of these algorithms were compared for different iterations and populations. In this study, the best results were obtained with the SSO algorithm. Loss of power supply probability (LPSP) = 0, Renewable factor (RF) = 1, with this algorithm our micro-grid has achieved a safe energy and minimum emission to feed the residence. In addition, a system that connects and disconnects the energy resources in varying load conditions was actualized with the SSO algorithm. With this algorithm LPSP = 0, RF = 1, Psize = 0,001. Maximum reliability, zero emission and minimum sizing of the energy sources in our microgrid were achieved with loads of up to 50%. Moreover, LPSP = 0.39, RF = 0.086, Psize = 0,21 values were obtained for loads 50% and above and good results were obtained for reliability, emission and sizing of energy sources

    A Brief Review of Cuckoo Search Algorithm (CSA) Research Progression from 2010 to 2013

    Get PDF
    Cuckoo Search Algorithm is a new swarm intelligence algorithm which based on breeding behavior of the Cuckoo bird. This paper gives a brief insight of the advancement of the Cuckoo Search Algorithm from 2010 to 2013. The first half of this paper presents the publication trend of Cuckoo Search Algorithm. The remaining of this paper briefly explains the contribution of the individual publication related to Cuckoo Search Algorithm. It is believed that this paper will greatly benefit the reader who needs a bird-eyes view of the Cuckoo Search Algorithm’s publications trend

    An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

    Get PDF
    In the last years, our society's high energy demand has led to the proposal of novel ways of consuming and producing electricity. In this sense, many countries have encouraged micro generation, including the use of renewable sources such as solar irradiation and wind generation, or considering the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal active&-reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms ofmillions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.European CommissionAgencia Estatal de InvestigaciónComunidad de Madri

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature

    Solving optimal generation dispatch problem in power networks through pso and lambda iteration techniques

    Get PDF
    Efficient solution to the problem of economic dispatch of network generators has been a growing concern to power system utilities in recent times. This is aimed at determining the optimal allocation of the total network demand among the available generating units such that the total cost of generation is reduced while maintaining an acceptable generation output subject to specified system constraints. This paper, therefore, attempts to resolve this issue from two main perspectives; Lambda Iterative-based approach and Particle Swarm Optimization (PSO) technique. The theoretical backgrounds as well as the mathematical formulations for the two approaches are presented. The standard IEEE 14-Bus, IEEE 30-Bus and the Indian 62-Bus networks are used as case studies to present illustrative examples for the approach. The simulation results obtained using the two approaches are presented and compared. The comparisons of the results obtained show that the two approaches are suitable for providing efficient solutions to economic dispatch problems in large power networks.Keywords: economic dispatch; network demands; lamda iterative; particle swarm optimization;generation cos

    Revisión de la optimización de Bess en sistemas de potencia

    Get PDF
    The increasing penetration of Distributed Energy Resources has imposed several challenges in the analysis and operation of power systems, mainly due to the uncertainties in primary resource. In the last decade, implementation of Battery Energy Storage Systems in electric networks has caught the interest in research since the results have shown multiple positive effects when deployed optimally. In this paper, a review in the optimization of battery storage systems in power systems is presented. Firstly, an overview of the context in which battery storage systems are implemented, their operation framework, chemistries and a first glance of optimization is shown. Then, formulations and optimization frameworks are detailed for optimization problems found in recent literature. Next, A review of the optimization techniques implemented or proposed, and a basic explanation of the more recurrent ones is presented. Finally, the results of the review are discussed. It is concluded that optimization problems involving battery storage systems are a trending topic for research, in which a vast quantity of more complex formulations have been proposed for Steady State and Transient Analysis, due to the inclusion of stochasticity, multi-periodicity and multi-objective frameworks. It was found that the use of Metaheuristics is dominant in the analysis of complex, multivariate and multi-objective problems while relaxations, simplifications, linearization, and single objective adaptations have enabled the use of traditional, more efficient, and exact techniques. Hybridization in metaheuristics has been important topic of research that has shown better results in terms of efficiency and solution quality.La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y operación de sistemas de potencia, principalmente debido a incertidumbres en los recursos primarios. En la última década, la implementación de sistemas de almacenamiento por baterías en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de la optimización de sistemas de almacenamiento por baterías en sistemas de potencia. Pare ello se procedió, primero, a mostrar el contexto en el cual se implementan los sistemas de baterías, su marco de operación, las tecnologías y las bases de optimización. Luego, fueron detallados la formulación y el marco de optimización de algunos de los problemas de optimización encontrados en literatura reciente. Posteriormente se presentó una revisión de las técnicas de optimización implementadas o propuestas recientemente y una explicación básica de las técnicas más recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo como resultados que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de tendencia para la investigación, en el que se han propuesto diversas formulaciones para el análisis en estado estacionario y transitorio, en problemas multiperiodo que incluyen la estocasticidad y formulaciones multiobjetivo. Adicionalmente, se encontró que el uso de técnicas metaheurísticas es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que la implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo ha permitido el uso de técnicas más eficientes y exactas. La hibridación de técnicas metaheurísticas ha sido un tema relevante para la investigación que ha mostrado mejorías en los resultados en términos de eficiencia y calidad de las soluciones
    corecore