12 research outputs found

    Design of exponential state estimators for neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this Letter, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Laypunovā€“Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China under Grants 05KJB110154 and BK2006064, and the National Natural Science Foundation of China under Grants 10471119 and 10671172

    State Estimation for Discrete-Time Fuzzy Cellular Neural Networks with Mixed Time Delays

    Get PDF
    This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator. The linear matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case. Compared with the present conditions in the form of M-matrix, the results obtained in this paper are less conservative and can be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed results

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Mittag-Leffler state estimator design and synchronization analysis for fractional order BAM neural networks with time delays

    Get PDF
    This paper deals with the extended design of Mittag-Leffler state estimator and adaptive synchronization for fractional order BAM neural networks (FBNNs) with time delays. By the aid of Lyapunov direct approach and Razumikhin-type method a suitable fractional order Lyapunov functional is constructed and a new set of novel sufficient condition are derived to estimate the neuron states via available output measurements such that the ensuring estimator error system is globally Mittag-Leffler stable. Then, the adaptive feedback control rule is designed, under which the considered FBNNs can achieve Mittag-Leffler adaptive synchronization by means of some fractional order inequality techniques. Moreover, the adaptive feedback control may be utilized even when there is no ideal information from the system parameters. Finally, two numerical simulations are given to reveal the effectiveness of the theoretical consequences.N/

    New Results for Periodic Solution of High-Order BAM Neural Networks with Continuously Distributed Delays and Impulses

    Get PDF
    By M-matrix theory, inequality techniques, and Lyapunov functional method, certain sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential stability of periodic solution for a new type of high-order BAM neural networks with continuously distributed delays and impulses. These novel conditions extend and improve some previously known results in the literature. Finally, an illustrative example and its numerical simulation are given to show the feasibility and correctness of the derived criteria

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems
    corecore