17,031 research outputs found

    DOC: Deep Open Classification of Text Documents

    Full text link
    Traditional supervised learning makes the closed-world assumption that the classes appeared in the test data must have appeared in training. This also applies to text learning or text classification. As learning is used increasingly in dynamic open environments where some new/test documents may not belong to any of the training classes, identifying these novel documents during classification presents an important problem. This problem is called open-world classification or open classification. This paper proposes a novel deep learning based approach. It outperforms existing state-of-the-art techniques dramatically.Comment: accepted at EMNLP 201

    OnionNet: Sharing Features in Cascaded Deep Classifiers

    Full text link
    The focus of our work is speeding up evaluation of deep neural networks in retrieval scenarios, where conventional architectures may spend too much time on negative examples. We propose to replace a monolithic network with our novel cascade of feature-sharing deep classifiers, called OnionNet, where subsequent stages may add both new layers as well as new feature channels to the previous ones. Importantly, intermediate feature maps are shared among classifiers, preventing them from the necessity of being recomputed. To accomplish this, the model is trained end-to-end in a principled way under a joint loss. We validate our approach in theory and on a synthetic benchmark. As a result demonstrated in three applications (patch matching, object detection, and image retrieval), our cascade can operate significantly faster than both monolithic networks and traditional cascades without sharing at the cost of marginal decrease in precision.Comment: Accepted to BMVC 201

    Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

    Get PDF
    Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.Comment: Accepted for publication on Pattern Recognition, 201

    Neural Networks for Fingerprint Recognition

    Get PDF
    After collecting a data base of fingerprint images, we design a neural network algorithm for fingerprint recognition. When presented with a pair of fingerprint images, the algorithm outputs an estimate of the probability that the two images originate from the same finger. In one experiment, the neural network is trained using a few hundred pairs of images and its performance is subsequently tested using several thousand pairs of images originated from a subset of the database corresponding to 20 individuals. The error rate currently achieved is less than 0.5%. Additional results, extensions, and possible applications are also briefly discussed
    corecore