472 research outputs found

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    Comparative Analysis of Single and Hybrid Neuro-Fuzzy-Based Models for an Industrial Heating Ventilation and Air Conditioning Control System

    Get PDF
    Hybridization of machine learning methods with soft computing techniques is an essential approach to improve the performance of the prediction models. Hybrid machine learning models, particularly, have gained popularity in the advancement of the high-performance control systems. Higher accuracy and better performance for prediction models of exergy destruction and energy consumption used in the control circuit of heating, ventilation, and air conditioning (HVAC) systems can be highly economical in the industrial scale to save energy. This research proposes two hybrid models of adaptive neuro-fuzzy inference system-particle swarm optimization (ANFIS-PSO), and adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) for HVAC. The results are further compared with the single ANFIS model. The ANFIS-PSO model with the RMSE of 0.0065, MAE of 0.0028, and R2 equal to 0.9999, with a minimum deviation of 0.0691 (KJ/s), outperforms the ANFIS-GA and single ANFIS models.Comment: 6 pages, 6 figure

    Short-term electricity prices forecasting in a competitive market by a hybrid PSO-ANFIS approach

    Get PDF
    In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of one week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. © 2011 Elsevier Ltd. All rights reserved

    Groundwater level prediction using a multiple objective genetic algorithm-grey relational analysis based weighted ensemble of anfis models

    Get PDF
    Predicting groundwater levels is critical for ensuring sustainable use of an aquifer’s limited groundwater reserves and developing a useful groundwater abstraction management strategy. The purpose of this study was to assess the predictive accuracy and estimation capability of various models based on the Adaptive Neuro Fuzzy Inference System (ANFIS). These models included Differential Evolution-ANFIS (DE-ANFIS), Particle Swarm Optimization-ANFIS (PSO-ANFIS), and traditional Hybrid Algorithm tuned ANFIS (HA-ANFIS) for the one-and multi-week forward forecast of groundwater levels at three observation wells. Model-independent partial autocorrelation functions followed by frequentist lasso regression-based feature selection approaches were used to recognize appropriate input variables for the prediction models. The performances of the ANFIS models were evaluated using various statistical performance evaluation indexes. The results revealed that the optimized ANFIS models performed equally well in predicting one-week-ahead groundwater levels at the observation wells when a set of various performance evaluation indexes were used. For improving prediction accuracy, a weighted-average ensemble of ANFIS models was proposed, in which weights for the individual ANFIS models were calculated using a Multiple Objective Genetic Algorithm (MOGA). The MOGA accounts for a set of benefits (higher values indicate better model performance) and cost (smaller values indicate better model performance) performance indexes calculated on the test dataset. Grey relational analysis was used to select the best solution from a set of feasible solutions produced by a MOGA. A MOGA-based individual model ranking revealed the superiority of DE-ANFIS (weight = 0.827), HA-ANFIS (weight = 0.524), and HAANFIS (weight = 0.697) at observation wells GT8194046, GT8194048, and GT8194049, respectively. Shannon’s entropy-based decision theory was utilized to rank the ensemble and individual ANFIS models using a set of performance indexes. The ranking result indicated that the ensemble model outperformed all individual models at all observation wells (ranking value = 0.987, 0.985, and 0.995 at observation wells GT8194046, GT8194048, and GT8194049, respectively). The worst performers were PSO-ANFIS (ranking value = 0.845), PSO-ANFIS (ranking value = 0.819), and DE-ANFIS (ranking value = 0.900) at observation wells GT8194046, GT8194048, and GT8194049, respectively. The generalization capability of the proposed ensemble modelling approach was evaluated for forecasting 2-, 4-, 6-, and 8-weeks ahead groundwater levels using data from GT8194046. The evaluation results confirmed the useability of the ensemble modelling for forecasting groundwater levels at higher forecasting horizons. The study demonstrated that the ensemble approach may be successfully used to predict multi-week-ahead groundwater levels, utilizing previous lagged groundwater levels as inputs

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning
    • …
    corecore