208 research outputs found

    Online Deep Learning for Improved Trajectory Tracking of Unmanned Aerial Vehicles Using Expert Knowledge

    Full text link
    This work presents an online learning-based control method for improved trajectory tracking of unmanned aerial vehicles using both deep learning and expert knowledge. The proposed method does not require the exact model of the system to be controlled, and it is robust against variations in system dynamics as well as operational uncertainties. The learning is divided into two phases: offline (pre-)training and online (post-)training. In the former, a conventional controller performs a set of trajectories and, based on the input-output dataset, the deep neural network (DNN)-based controller is trained. In the latter, the trained DNN, which mimics the conventional controller, controls the system. Unlike the existing papers in the literature, the network is still being trained for different sets of trajectories which are not used in the training phase of DNN. Thanks to the rule-base, which contains the expert knowledge, the proposed framework learns the system dynamics and operational uncertainties in real-time. The experimental results show that the proposed online learning-based approach gives better trajectory tracking performance when compared to the only offline trained network.Comment: corrected version accepted for ICRA 201

    Fuzzy Gain-Scheduling PID for UAV Position and Altitude Controllers

    Get PDF
    Unmanned aerial vehicle (UAV) applications have evolved to a wide range of fields in the last decade. One of the main challenges in autonomous tasks is the UAV stability during maneuvers. Thus, attitude and position control play a crucial role in stabilizing the vehicle in the desired orientation and path. Many control techniques have been developed for this. However, proportional integral derivative (PID) controllers are often used due their structure and efficiency. Despite PID’s good performance, different requirements may be present at different mission stages. The main contribution of this research work is the development of a novel strategy based on a fuzzy-gain scheduling mechanism to adjust the PID controller to stabilize both position and altitude. This control strategy must be effective, simple, and robust to uncertainties and external disturbances. The Robot Operating System (ROS) integrates the proposed system and the flight control unit. The obtained results showed that the proposed approach was successfully applied to the trajectory tracking and revealed a good performance compared to conventional PID and in the presence of noises. In the tests, the position controller was only affected when the altitude error was higher, with an error of 2% lower.publishedVersio

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance

    Real Time Optimal Tuning of Quadcopter Attitude Controller Using Particle Swarm Optimization

    Get PDF
    A real-time novel algorithm for proportional, integral and derivative (PID) controller tuning for quadcopters is introduced. The particle swarm optimization (PSO) method is utilized to search the quadcopter solution space to find the best PID controller parameters. A fuzzy logic (FL) controller is used to provide proper velocity reference signals to serve as tracking set points to be achieved by the PID controller. This nested loop design is proposed for stabilizing the quadcopter, where the fuzzy logic controller (FL) is used in the stable loop (i.e. outer loop) to control the desired angle, while the PID controller is used for the rate loop (i.e. inner loop). Finally, the optimum generated PID parameters were achieved in real time using the PSO search algorithm. The generated parameters were tested successfully using an experimental quadcopter setup at the University of Jordan

    MIMO PID Controller Tuning Method for Quadrotor Based on LQR/LQG Theory

    Get PDF
    In this work, a new pre-tuning multivariable PID (Proportional Integral Derivative) controllers method for quadrotors is put forward. A procedure based on LQR/LQG (Linear Quadratic Regulator/Gaussian) theory is proposed for attitude and altitude control, which suposes a considerable simplification of the design problem due to only one pretuning parameter being used. With the aim to analyze the performance and robustness of the proposed method, a non-linear mathematical model of the DJI-F450 quadrotor is employed, where rotors dynamics, together with sensors drift/bias properties and noise characteristics of low-cost commercial sensors typically used in this type of applications are considered. In order to estimate the state vector and compensate bias/drift effects in the measures, a combination of filtering and data fusion algorithms (Kalman filter and Madgwick algorithm for attitude estimation) are proposed and implemented. Performance and robustness analysis of the control system is carried out by employing numerical simulations, which take into account the presence of uncertainty in the plant model and external disturbances. The obtained results show the proposed controller design method for multivariable PID controller is robust with respect to: (a) parametric uncertainty in the plant model, (b) disturbances acting at the plant input, (c) sensors measurement and estimation errors

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Robust hovering and trajectory tracking control of a quadrotor helicopter using acceleration feedback and a novel disturbance observer

    Get PDF
    Hovering and trajectory tracking control of rotary-wing aircrafts in the presence of uncertainties and external disturbances is a very challenging task. This thesis focuses on the development of the robust hovering and trajectory tracking control algorithms for a quadrotor helicopter subject to both periodic and aperiodic disturbances along with noise and parametric uncertainties. A hierarchical control structure is employed where high-level position controllers produce reference attitude angles for the low-level attitude controllers. Reference attitude angles are usually determined analytically from the position command signals that control the positional dynamics. However, such analytical formulas may produce large and non-smooth reference angles which must be saturated and low-pass filtered. In this thesis, desired attitude angles are determined numerically using constrained nonlinear optimization where certain magnitude and rate constraints are imposed. Furthermore, an acceleration based disturbance observer (AbDOB) is designed to estimate and suppress disturbances acting on the positional dynamics of the quadrotor. For the attitude control, a nested position, velocity, and inner acceleration feedback control structure consisting of PID and PI type controllers are developed to provide high sti ness against external disturbances. Reliable angular acceleration is estimated through an extended Kalman filter (EKF) cascaded with a classical Kalman lter (KF). This thesis also proposes a novel disturbance observer which consists of a bank of band-pass filters connected parallel to the low-pass filter of a classical disturbance observer. Band-pass filters are centered at integer multiples of the fundamental frequency of the periodic disturbance. Number and bandwidth of the band-pass filters are two crucial parameters to be tuned in the implementation of the new structure. Proposed disturbance observer is integrated with a sliding mode controller to tackle the robust hovering and trajectory tracking control problem. The sensitivity of the proposed disturbance observer based control system to the number and bandwidth of the band-pass filters are thoroughly investigated via several simulations. Simulations are carried out on a high delity model where sensor biases and measurement noise are also considered. Results show that the proposed controllers are very effective in providing robust hovering and trajectory tracking performance when the quadrotor helicopter is subject to the wind gusts generated by the Dryden wind model along with plant uncertainties and measurement noise. A comparison with the classical disturbance observer-based control is also provided where better tracking performance with improved robustness is achieved in the presence of noise and external disturbance

    Design and Implementation of an Artificial Neural Network Controller for Quadrotor Flight in Confined Environment

    Get PDF
    Quadrotors offer practical solutions for many applications, such as emergency rescue, surveillance, military operations, videography and many more. For this reason, they have recently attracted the attention of research and industry. Even though they have been intensively studied, quadrotors still suffer from some challenges that limit their use, such as trajectory measurement, attitude estimation, obstacle avoidance, safety precautions, and land cybersecurity. One major problem is flying in a confined environment, such as closed buildings and tunnels, where the aerodynamics around the quadrotor are affected by close proximity objects, which result in tracking performance deterioration, and sometimes instability. To address this problem, researchers followed three different approaches; the Modeling approach, which focuses on the development of a precise dynamical model that accounts for the different aerodynamic effects, the Sensor Integration approach, which focuses on the addition of multiple sensors to the quadrotor and applying algorithms to stabilize the quadrotor based on their measurements, and the Controller Design approach, which focuses on the development of an adaptive and robust controller. In this research, a learning controller is proposed as a solution for the issue of quadrotor trajectory control in confined environments. This controller utilizes Artificial Neural Networks to adjust for the unknown aerodynamics on-line. A systematic approach for controller design is developed, so that, the approach could be followed for the development of controllers for other nonlinear systems of similar form. One goal for this research is to develop a global controller that could be applied to any quadrotor with minimal adjustment. A novel Artificial Neural Network structure is presented that increases learning efficiency and speed. In addition, a new learning algorithm is developed for the Artificial Neural Network, when utilized with the developed controller. Simulation results for the designed controller when applied to the Qball-X4 quadrotor are presented that show the effectiveness of the proposed Artificial Neural Network structure and the developed learning algorithm in the presence of variety of different unknown aerodynamics. These results are confirmed with real time experimentation, as the developed controller was successfully applied to Quanser’s Qball-X4 quadrotor for the flight control in confined environment. The practical challenges associated with the application of such a controller for quadrotor flight in confined environment are analyzed and adequately resolved to achieve an acceptable tracking performance

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema
    corecore