8,564 research outputs found

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition

    Get PDF
    This research study aims to develop automatic optical inspection (AOI) for detecting keycaps misplacement on the keyboard. The AOI hardware has been designed using an industrial camera with an additional mechanical jig and lighting system. Optical character recognition (OCR) using the Tesseract OCR engine is the proposed method to detect keycaps misplacement. In addition, captured images were cropped using a predefined region of interest (ROI) during the setup. Subsequently, the cropped ROIs were processed to acquire binary images. Furthermore, Tesseract processed these binary images to recognize the text on the keycaps. Keycaps misplacement could be identified by comparing the predicted text with the actual text on the golden sample. Experiments on 25 defects and 25 non-defected samples provided a classification accuracy of 97.34%, a precision of 100%, and a recall of 90.70%. Meanwhile, the character error rate (CER) obtained from the test on a total of 57 characters provided a performance of 10.53%. This outcome has implications for developing AOI for various keyboard products. In addition, the precision level of 100% signifies that the proposed method always offers correct results in detecting product defects. Such outcomes are critical in industrial applications to prevent defective products from circulating in the market

    Metrology and Characterisation of Defects in Thin-Film Barrier Layers Employed in Flexible Photovoltaic Modules

    Get PDF
    Flexible thin-film photovoltaic (PV) modules based on copper indium gallium selenide (CIGS) materials are one of the most recent developments in the renewable energy field, and the latest films have efficiencies at or beyond the level of Si-based rigid PV modules. Whilst these films offer significant advantages in terms of mass and the possibility of building-integrated photovoltaic (BIPV) applications, they are at present highly susceptible to long term environmental degradation as a result of water vapour transmission through the protective encapsulation layer to the active (absorber) layer. To maintain the PV module flexibility and to reduce or eliminate the water vapour permeability, the PV encapsulation includes a barrier layer of amorphous aluminium oxide (Al2O3) material of a few nanometres thickness deposited on a planarised polyethylene naphthalate (PEN) substrate. The highly conformal barrier layer of the Al2O3 is produced by atomic layer deposition (ALD) methods using roll-to-roll (R2R) technology. Nevertheless, water vapour permeation is still facilitated by the presence of micro and nano-scale defects generated during the deposition processes of the barrier material, which results in decreased cell efficiency and reduced unit longevity. The state of the art surface metrology technologies including: optical microscopy, white light scanning interferometry (WLSI), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were extensively deployed in this project as offline surface characterisation methods to characterise the water vapour barrier layer defects, which are postulated to be directly responsible for the water vapour ingress. Areal surface texture parameters analysis based on wolf pruning, area pruning and segmentation analysis methods as defined in ISO 25178-2; allow the efficient separation of small insignificant defects from significant defects. The presence of both large and small defects is then correlated with the barrier films functionality as measured on typical sets of Al2O3 ALD films using a standard MOCON® (quantitative gas permeation) test. The investigation results of the initial analysis finishes by drawing conclusions based on the analysis of the water vapour transmission rate (WVTR), defects size, density and distribution, where it is confirmed that small numbers of large defects have more influence on the deterioration of the barrier films functionality than large numbers of small defects. This result was then used to provide the basis for developing a roll-to-roll in process metrology device for quality control of flexible PV barrier films. Furthermore, a theoretical model approach was developed in this thesis based on the water vapour diffusion theory to determine the cut- off level between large significant defects and small insignificant defects. The results of the model would seem to reveal that, in order to build up in process, non-contact optical defect detection system for R2R barrier films, the critical spatial resolution required for defect detection need not be less than 3 μm laterally and 3Sq nm (Sq= root mean square surface roughness deviation of non-defective sample area) per field of view (FOV) vertically. Any defect that has dimensions less than this appears to have a significantly lower effect on the PV barrier properties and functionality. In this study, the surface topography analysis results and the theoretical model approach outcomes, both provide the basis for developing a R2R in process metrology device for PV barrier films defect detection. Eventually, the work in this thesis reports on the deployment of new (novel) in-line interferometric optical sensors based on wavelength scanning interferometry (WSI) designed to measure and catalogue the PV barrier films defects where they are present. The sensors have built-in environmental vibration compensation and are being deployed on a demonstrator system at a R2R production facility in the UK

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    Entwicklung einer Fully-Convolutional-Netzwerkarchitektur fĂĽr die Detektion von defekten LED-Chips in Photolumineszenzbildern

    Get PDF
    Nowadays, light-emitting diodes (LEDs) can be found in a large variety of applications, from standard LEDs in domestic lighting solutions to advanced chip designs in automobiles, smart watches and video walls. The advances in chip design also affect the test processes, where the execution of certain contact measurements is exacerbated by ever decreasing chip dimensions or even rendered impossible due to the chip design. As an instance, wafer probing determines the electrical and optical properties of all LED chips on a wafer by contacting each and every chip with a prober needle. Chip designs without a contact pad on the surface, however, elude wafer probing and while electrical and optical properties can be determined by sample measurements, defective LED chips are distributed randomly over the wafer. Here, advanced data analysis methods provide a new approach to gather defect information from already available non-contact measurements. Photoluminescence measurements, for example, record a brightness image of an LED wafer, where conspicuous brightness values indicate defective chips. To extract these defect information from photoluminescence images, a computer-vision algorithm is required that transforms photoluminescence images into defect maps. In other words, each and every pixel of a photoluminescence image must be classifed into a class category via semantic segmentation, where so-called fully-convolutional-network algorithms represent the state-of-the-art method. However, the aforementioned task poses several challenges: on the one hand, each pixel in a photoluminescence image represents an LED chip and thus, pixel-fine output resolution is required. On the other hand, photoluminescence images show a variety of brightness values from wafer to wafer in addition to local areas of differing brightness. Additionally, clusters of defective chips assume various shapes, sizes and brightness gradients and thus, the algorithm must reliably recognise objects at multiple scales. Finally, not all salient brightness values correspond to defective LED chips, requiring the algorithm to distinguish salient brightness values corresponding to measurement artefacts, non-defect structures and defects, respectively. In this dissertation, a novel fully-convolutional-network architecture was developed that allows the accurate segmentation of defective LED chips in highly variable photoluminescence wafer images. For this purpose, the basic fully-convolutional-network architecture was modifed with regard to the given application and advanced architectural concepts were incorporated so as to enable a pixel-fine output resolution and a reliable segmentation of multiple scaled defect structures. Altogether, the developed dense ASPP Vaughan architecture achieved a pixel accuracy of 97.5 %, mean pixel accuracy of 96.2% and defect-class accuracy of 92.0 %, trained on a dataset of 136 input-label pairs and hereby showed that fully-convolutional-network algorithms can be a valuable contribution to data analysis in industrial manufacturing.Leuchtdioden (LEDs) werden heutzutage in einer Vielzahl von Anwendungen verbaut, angefangen bei Standard-LEDs in der Hausbeleuchtung bis hin zu technisch fortgeschrittenen Chip-Designs in Automobilen, Smartwatches und Videowänden. Die Weiterentwicklungen im Chip-Design beeinflussen auch die Testprozesse: Hierbei wird die Durchführung bestimmter Kontaktmessungen durch zunehmend verringerte Chip-Dimensionen entweder erschwert oder ist aufgrund des Chip-Designs unmöglich. Die sogenannteWafer-Prober-Messung beispielsweise ermittelt die elektrischen und optischen Eigenschaften aller LED-Chips auf einem Wafer, indem jeder einzelne Chip mit einer Messnadel kontaktiert und vermessen wird; Chip-Designs ohne Kontaktpad auf der Oberfläche können daher nicht durch die Wafer-Prober-Messung charakterisiert werden. Während die elektrischen und optischen Chip-Eigenschaften auch mittels Stichprobenmessungen bestimmt werden können, verteilen sich defekte LED-Chips zufällig über die Waferfläche. Fortgeschrittene Datenanalysemethoden ermöglichen hierbei einen neuen Ansatz, Defektinformationen aus bereits vorhandenen, berührungslosen Messungen zu gewinnen. Photolumineszenzmessungen, beispielsweise, erfassen ein Helligkeitsbild des LEDWafers, in dem auffällige Helligkeitswerte auf defekte LED-Chips hinweisen. Ein Bildverarbeitungsalgorithmus, der diese Defektinformationen aus Photolumineszenzbildern extrahiert und ein Defektabbild erstellt, muss hierzu jeden einzelnen Bildpunkt mittels semantischer Segmentation klassifizieren, eine Technik bei der sogenannte Fully-Convolutional-Netzwerke den Stand der Technik darstellen. Die beschriebene Aufgabe wird jedoch durch mehrere Faktoren erschwert: Einerseits entspricht jeder Bildpunkt eines Photolumineszenzbildes einem LED-Chip, so dass eine bildpunktfeine Auflösung der Netzwerkausgabe notwendig ist. Andererseits weisen Photolumineszenzbilder sowohl stark variierende Helligkeitswerte von Wafer zu Wafer als auch lokal begrenzte Helligkeitsabweichungen auf. Zusätzlich nehmen Defektanhäufungen unterschiedliche Formen, Größen und Helligkeitsgradienten an, weswegen der Algorithmus Objekte verschiedener Abmessungen zuverlässig erkennen können muss. Schlussendlich weisen nicht alle auffälligen Helligkeitswerte auf defekte LED-Chips hin, so dass der Algorithmus in der Lage sein muss zu unterscheiden, ob auffällige Helligkeitswerte mit Messartefakten, defekten LED-Chips oder defektfreien Strukturen korrelieren. In dieser Dissertation wurde eine neuartige Fully-Convolutional-Netzwerkarchitektur entwickelt, die die akkurate Segmentierung defekter LED-Chips in stark variierenden Photolumineszenzbildern von LED-Wafern ermöglicht. Zu diesem Zweck wurde die klassische Fully-Convolutional-Netzwerkarchitektur hinsichtlich der beschriebenen Anwendung angepasst und fortgeschrittene architektonische Konzepte eingearbeitet, um eine bildpunktfeine Ausgabeauflösung und eine zuverlässige Sementierung verschieden großer Defektstrukturen umzusetzen. Insgesamt erzielt die entwickelte dense-ASPP-Vaughan-Architektur eine Pixelgenauigkeit von 97,5 %, durchschnittliche Pixelgenauigkeit von 96,2% und eine Defektklassengenauigkeit von 92,0 %, trainiert mit einem Datensatz von 136 Bildern. Hiermit konnte gezeigt werden, dass Fully-Convolutional-Netzwerke eine wertvolle Erweiterung der Datenanalysemethoden sein können, die in der industriellen Fertigung eingesetzt werden
    • …
    corecore