6,683 research outputs found

    Covariance estimation for multivariate conditionally Gaussian dynamic linear models

    Full text link
    In multivariate time series, the estimation of the covariance matrix of the observation innovations plays an important role in forecasting as it enables the computation of the standardized forecast error vectors as well as it enables the computation of confidence bounds of the forecasts. We develop an on-line, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically found that, for a range of simulated time series, the proposed covariance estimator has good performance converging to the true values of the unknown observation covariance matrix. Over a simulated time series, the new method approximates the correct estimates, produced by a non-sequential Monte Carlo simulation procedure, which is used here as the gold standard. The special, but important, vector autoregressive (VAR) and time-varying VAR models are illustrated by considering London metal exchange data consisting of spot prices of aluminium, copper, lead and zinc.Comment: 21 pages, 2 figures, 6 table

    spGARCH: An R-Package for Spatial and Spatiotemporal ARCH models

    Full text link
    In this paper, a general overview on spatial and spatiotemporal ARCH models is provided. In particular, we distinguish between three different spatial ARCH-type models. In addition to the original definition of Otto et al. (2016), we introduce an exponential spatial ARCH model in this paper. For this new model, maximum-likelihood estimators for the parameters are proposed. In addition, we consider a new complex-valued definition of the spatial ARCH process. From a practical point of view, the use of the R-package spGARCH is demonstrated. To be precise, we show how the proposed spatial ARCH models can be simulated and summarize the variety of spatial models, which can be estimated by the estimation functions provided in the package. Eventually, we apply all procedures to a real-data example

    Estimation of the Spatial Weights Matrix under Structural Constraints

    Get PDF
    While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand

    Community Detection and Growth Potential Prediction from Patent Citation Networks

    Full text link
    The scoring of patents is useful for technology management analysis. Therefore, a necessity of developing citation network clustering and prediction of future citations for practical patent scoring arises. In this paper, we propose a community detection method using the Node2vec. And in order to analyze growth potential we compare three ''time series analysis methods'', the Long Short-Term Memory (LSTM), ARIMA model, and Hawkes Process. The results of our experiments, we could find common technical points from those clusters by Node2vec. Furthermore, we found that the prediction accuracy of the ARIMA model was higher than that of other models.Comment: arXiv admin note: text overlap with arXiv:1607.00653 by other author

    Predicting Bid-Ask Spreads Using Long Memory Autoregressive Conditional Poisson Models

    Get PDF
    We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of bid-ask spreads like the strong autocorrelation and discreteness of observations. We discuss theoretical properties of LMACP models and evaluate rolling window forecasts of quoted bid-ask spreads for stocks traded at NYSE and NASDAQ. We show that Poisson time series models significantly outperform forecasts from ARMA, ARFIMA, ACD and FIACD models. The economic significance of our results is supported by the evaluation of a trade schedule. Scheduling trades according to spread forecasts we realize cost savings of up to 13 % of spread transaction costs.Bid-ask spreads, forecasting, high-frequency data, stock market liquidity, count data time series, long memory Poisson autoregression

    Algorithms for Estimating Trends in Global Temperature Volatility

    Full text link
    Trends in terrestrial temperature variability are perhaps more relevant for species viability than trends in mean temperature. In this paper, we develop methodology for estimating such trends using multi-resolution climate data from polar orbiting weather satellites. We derive two novel algorithms for computation that are tailored for dense, gridded observations over both space and time. We evaluate our methods with a simulation that mimics these data's features and on a large, publicly available, global temperature dataset with the eventual goal of tracking trends in cloud reflectance temperature variability.Comment: Published in AAAI-1
    corecore