2,548 research outputs found

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    New Stability Criterion for Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Probabilistic Time-Varying Delays

    Get PDF
    A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-Krasovskii functional is the positive definite form of p powers, which is different from those of existing literature. Moreover, a numerical example illustrates the effectiveness of the proposed methods

    Exponential synchronization for reaction-diffusion neural networks with mixed time-varying delays via periodically intermittent control

    Get PDF
    This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme

    State Estimation for Discrete-Time Fuzzy Cellular Neural Networks with Mixed Time Delays

    Get PDF
    This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator. The linear matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case. Compared with the present conditions in the form of M-matrix, the results obtained in this paper are less conservative and can be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed results

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    New synchronization criteria for an array of neural networks with hybrid coupling and time-varying delays

    Get PDF
    This paper is concerned with the global exponential synchronization for an array of hybrid coupled neural networks with time-varying leakage delay, discrete and distributed delays. Applying a novel Lyapunov functional and the property of outer coupling matrices of the neural networks, sufficient conditions are obtained for the global exponential synchronization of the system. The derived synchronization criteria are closely related with the time-varying delays and the coupling structure of the networks. The maximal allowable upper bounds of the time-varying delays can be obtained guaranteeing the global synchronization for the neural networks. The method we adopt in this paper is different from the commonly used linear matrix inequality (LMI) technique, and our synchronization conditions are new, which are easy to check in comparison with the previously reported LMI-based ones. Some examples are given to show the effectiveness of the obtained theoretical results

    Robust passivity and passification of stochastic fuzzy time-delay systems

    Get PDF
    The official published version can be obtained from the link below.In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy systems with time-varying delays. The fuzzy system is based on the Takagi–Sugeno (T–S) model that is often used to represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.This work was supported by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers 200802861044, the National Natural Science Foundation of China under Grant 60804028 and the Royal Society of the United Kingdom
    corecore