404 research outputs found

    Performance Assessment of Routing Protocols for IoT/6LoWPAN Networks

    Get PDF
    The Internet of Things (IoT) proposes a disruptive communication paradigm that allows smart objects to exchange data among themselves to reach a common goal. IoT application scenarios are multiple and can range from a simple smart home lighting system to fully controlled automated manufacturing chains. In the majority of IoT deployments, things are equipped with small devices that can suffer from severe hardware and energy restrictions that are responsible for performing data processing and wireless communication tasks. Thus, due to their features, communication networks that are used by these devices are generally categorized as Low Power and Lossy Networks (LLNs). The considerable variation in IoT applications represents a critical issue to LLN networks, which should offer support to different requirements as well as keeping reasonable quality-of-service (QoS) levels. Based on this challenge, routing protocols represent a key issue in IoT scenarios deployment. Routing protocols are responsible for creating paths among devices and their interactions. Hence, network performance and features are highly dependent on protocol behavior. Also, based on the adopted protocol, the support for some specific requirements of IoT applications may or may not be provided. Thus, a routing protocol should be projected to attend the needs of the applications considering the limitations of the device that will execute them. Looking to attend the demand of routing protocols for LLNs and, consequently, for IoT networks, the Internet Engineering Task Force (IETF) has designed and standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). This protocol, although being robust and offering features to fulfill the need of several applications, still presents several faults and weaknesses (mainly related to its high complexity and memory requirement), which limits its adoption in IoT scenarios. An alternative to RPL, the Lightweight On-demand Ad Hoc Distancevector Routing Protocol – Next Generation (LOADng) has emerged as a less complicated routing solution for LLNs. However, the cost of its simplicity is paid for with the absence of adequate support for a critical set of features required for many IoT environments. Thus, based on the challenging open issues related to routing in IoT networks, this thesis aims to study and propose contributions to better attend the network requirements of IoT scenarios. A comprehensive survey, reviewing state-of-the-art routing protocols adopted for IoT, identified the strengths and weaknesses of current solutions available in the literature. Based on the identified limitations, a set of improvements is designed to overcome these issues and enhance IoT network performance. The novel solutions are proposed to include reliable and efficient support to attend the needs of IoT applications, such as mobility, heterogeneity, and different traffic patterns. Moreover, mechanisms to improve the network performance in IoT scenarios, which integrate devices with different communication technologies, are introduced. The studies conducted to assess the performance of the proposed solutions showed the high potential of the proposed solutions. When the approaches presented in this thesis were compared with others available in the literature, they presented very promising results considering the metrics related to the Quality of Service (QoS), network and energy efficiency, and memory usage as well as adding new features to the base protocols. Hence, it is believed that the proposed improvements contribute to the state-of-the-art of routing solutions for IoT networks, increasing the performance and adoption of enhanced protocols.A Internet das Coisas, do inglês Internet of Things (IoT), propõe um paradigma de comunicação disruptivo para possibilitar que dispositivos, que podem ser dotados de comportamentos autónomos ou inteligentes, troquem dados entre eles buscando alcançar um objetivo comum. Os cenários de aplicação do IoT são muito variados e podem abranger desde um simples sistema de iluminação para casa até o controle total de uma linha de produção industrial. Na maioria das instalações IoT, as “coisas” são equipadas com um pequeno dispositivo, responsável por realizar as tarefas de comunicação e processamento de dados, que pode sofrer com severas restrições de hardware e energia. Assim, devido às suas características, a rede de comunicação criada por esses dispositivos é geralmente categorizada como uma Low Power and Lossy Network (LLN). A grande variedade de cenários IoT representam uma questão crucial para as LLNs, que devem oferecer suporte aos diferentes requisitos das aplicações, além de manter níveis de qualidade de serviço, do inglês Quality of Service (QoS), adequados. Baseado neste desafio, os protocolos de encaminhamento constituem um aspecto chave na implementação de cenários IoT. Os protocolos de encaminhamento são responsáveis por criar os caminhos entre os dispositivos e permitir suas interações. Assim, o desempenho e as características da rede são altamente dependentes do comportamento destes protocolos. Adicionalmente, com base no protocolo adotado, o suporte a alguns requisitos específicos das aplicações de IoT podem ou não ser fornecidos. Portanto, estes protocolos devem ser projetados para atender as necessidades das aplicações assim como considerando as limitações do hardware no qual serão executados. Procurando atender às necessidades dos protocolos de encaminhamento em LLNs e, consequentemente, das redes IoT, a Internet Engineering Task Force (IETF) desenvolveu e padronizou o IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). O protocolo, embora seja robusto e ofereça recursos para atender às necessidades de diferentes aplicações, apresenta algumas falhas e fraquezas (principalmente relacionadas com a sua alta complexidade e necessidade de memória) que limitam sua adoção em cenários IoT. Em alternativa ao RPL, o Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) emergiu como uma solução de encaminhamento menos complexa para as LLNs. Contudo, o preço da simplicidade é pago com a falta de suporte adequado para um conjunto de recursos essenciais necessários em muitos ambientes IoT. Assim, inspirado pelas desafiadoras questões ainda em aberto relacionadas com o encaminhamento em redes IoT, esta tese tem como objetivo estudar e propor contribuições para melhor atender os requisitos de rede em cenários IoT. Uma profunda e abrangente revisão do estado da arte sobre os protocolos de encaminhamento adotados em IoT identificou os pontos fortes e limitações das soluções atuais. Com base nas debilidades encontradas, um conjunto de soluções de melhoria é proposto para superar carências existentes e melhorar o desempenho das redes IoT. As novas soluções são propostas para incluir um suporte confiável e eficiente capaz atender às necessidades das aplicações IoT relacionadas com suporte à mobilidade, heterogeneidade dos dispositivos e diferentes padrões de tráfego. Além disso, são introduzidos mecanismos para melhorar o desempenho da rede em cenários IoT que integram dispositivos com diferentes tecnologias de comunicação. Os vários estudos realizados para mensurar o desempenho das soluções propostas mostraram o grande potencial do conjunto de melhorias introduzidas. Quando comparadas com outras abordagens existentes na literatura, as soluções propostas nesta tese demonstraram um aumento do desempenho consistente para métricas relacionadas a qualidade de serviço, uso de memória, eficiência energética e de rede, além de adicionar novas funcionalidades aos protocolos base. Portanto, acredita-se que as melhorias propostas contribuiem para o avanço do estado da arte em soluções de encaminhamento para redes IoT e aumentar a adoção e utilização dos protocolos estudados

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    A novel k-means powered algorithm for an efficient clustering in vehicular ad-hoc networks

    Get PDF
    Considerable attention has recently been given to the routing issue in vehicular ad-hoc networks (VANET). Indeed, the repetitive communication failures and high velocity of vehicles reduce the efficacy of routing protocols in VANET. The clustering technique is considered an important solution to overcome these difficulties. In this paper, an efficient clustering approach using an adapted k-means algorithm for VANET has been introduced to enhance network stability in a highway environment. Our approach relies on a clustering scheme that accounts for the network characteristics and the number of connected vehicles. The simulation indicates that the proposed approach is more efficient than similar schemes. The results obtained appear an overall increase in constancy, proven by an increase in cluster head lifetime by 66%, and an improvement in robustness clear in the overall reduction of the end-to-end delay by 46% as well as an increase in throughput by 74%

    Analysis and Modeling Experiment Performance Parameters of Routing Protocols in MANETs and VANETs

    Full text link
    In this paper, a framework for experimental parameters in which Packet Delivery Ratio (PDR), effect of link duration over End-to-End Delay (E2ED) and Normalized Routing Overhead (NRO) in terms of control packets is analyzed and modeled for Mobile Ad-Hoc NETworks (MANETs) and Vehicular Ad-Hoc NETworks (VANETs) with the assumption that nodes (vehicles) are sparsely moving in two different road. Moreover, this paper contributes the performance comparison of one Proactive Routing Protocol; Destination Sequenced Distance vector (DSDV) and two reactive protocols; DYnamic Source Routing (DSR) and DYnamic MANET On-Demand (DYMO). A novel contribution of this work is enhancements in default versions of selected routing protocols. Three performance parameters; PDR, E2ED and NRO with varying scalabilities are measured to analyze the performance of selected routing protocols with their original and enhanced versions. From extensive simulations, it is observed that DSR outperforms among all three protocols at the cost of delay. NS-2 simulator is used for simulation with TwoRayGround propagation model to evaluate analytical results

    Shallow Water Acoustic Networking [Algorithms

    Get PDF
    Acoustic networks of autonomous underwater vehicles (AUVs) cannot typically rely on protocols intended for terrestrial radio networks. This work describes a new location-aware source routing (LASR) protocol shown to provide superior network performance over two commonly used network protocols2014;flooding and dynamic source routing (DSR)2014;in simulation studies of underwater acoustic networks of AUVs. LASR shares some features with DSR but also includes an improved link/route metric and a node tracking system. LASR also replaces DSR's shortest-path routing with the expected transmission count (ETX) metric. This allows LASR to make more informed routing decisions, which greatly increases performance compared to DSR. Provision for a node tracking system is another novel addition: using the time-division multiple access (TDMA) feature of the simulated acoustic modem, LASR includes a tracking system that predicts node locations, so that LASR can proactively respond to topology changes. LASR delivers 2-3 times as many messages as flooding in 72% of the simulated missions and delivers 22013;4 times as many messages as DSR in 100% of the missions. In 67% of the simulated missions, LASR delivers messages requiring multiple hops to cross the network with 22013;5 times greater reliability than flooding or DSR

    Improving the Routing Layer of Ad Hoc Networks Through Prediction Techniques

    Get PDF
    Cada dia és més evident el paper clau que juguen la informàtica/computació mòbil i les tecnologies sense fils a les nostres activitats diàries. Estar sempre connectat, en qualsevol moment i lloc, és actualment més una necessitat que un luxe. Els escenaris de computació ubics creats en base a aquests avenços tecnològics, permeten a les persones proporcionar i consumir informació compartida. En aquests escenaris, les xarxes que donen suport a aquestes comunicacions són típicament sense fils i ad hoc. Les característiques dinàmiques i canviants de les xarxes ad hoc, fan que el treball realitzat per la capa d'enrutament tingui un gran impacte en el rendiment d'aquestes xarxes. És molt important que la capa d'enrutament reaccioni ràpidament als canvis que es produeixen, i fins i tot s'avanci als que es produiran en un futur proper, mitjançant l'aplicació de tècniques de predicció. Aquesta tesi investiga si les tècniques de predicció poden millorar la capa d'enrutament de les xarxes ad hoc. Com a primer pas en aquesta direcció, explorem la potencialitat d'una estratègia de Predictor-Basat-en-Història (HBP) per predir la Informació de Control Topològic (TCI) generada pels protocols d'enrutament. Demostrem que hi ha una gran oportunitat per predir TCI, i aquesta predicció pot centrar-se en un petit subconjunt de missatges. En base a les nostres troballes, implementem el predictor OLSR-HBP i l'avaluem respecte al protocol Optimized Link State Routing (OLSR). OLSR-HBP aconsegueix disminucions importants de TCI (sobrecàrrega de senyalització), sense afectar el funcionament de la xarxa i necessita una quantitat de recursos petita i assequible. Finalment, en referència a l'impacte de la predicció en les dades d'enrutament tant de la informació de Qualitat d'Enllaç como de Ruta (o Extrem-a-Extrem), demostrem que l'Anàlisi de Sèries Temporals és un enfocament prometedor per predir amb precisió, tant la Qualitat d'Enllaç como la Qualitat d'Extrem a Extrem en Xarxes Comunitàries.Cada día es más evidente el papel clave que juegan la informática/computación móvil y las tecnologías inalámbricas en nuestras actividades diarias. Estar siempre conectado, en cualquier momento y lugar, es actualmente más una necesidad que un lujo. Los escenarios de computación ubicuos creados en base a estos avances tecnológicos, permiten a las personas proporcionar y consumir información compartida. En estos escenarios, las redes que dan soporte a estas comunicaciones son típicamente inalámbricas y ad hoc. Las características dinámicas y cambiantes de las redes ad hoc, hacen que el trabajo realizado por la capa de enrutamiento tenga un gran impacto en el rendimiento de estas redes. Es muy importante que la capa de enrutamiento reaccione rápidamente a los cambios que se producen, e incluso se adelante a los que sucederán en un futuro cercano, mediante la aplicación de técnicas de predicción. Esta tesis investiga si las técnicas de predicción pueden mejorar la capa de enrutamiento de las redes ad hoc. Como primer paso en esta dirección, exploramos la potencialidad de una estrategia de Predictor-Basado-en-Historia (HBP) para predecir la Información de Control Topológico (TCI) generada por los protocolos de enrutamiento. Demostramos que hay una gran oportunidad para predecir TCI, y esta predicción puede centrarse en un pequeño subconjunto de mensajes. En base a nuestros hallazgos, implementamos el predictor OLSR-HBP y lo evaluamos con respecto al protocolo Optimized Link State Routing (OLSR). OLSR-HBP consigue disminuciones importantes de TCI (sobrecarga de señalización), sin afectar al funcionamiento de la red, y necesita una cantidad de recursos pequeña y asequible. Finalmente, en referencia al impacto de la predicción en los datos de enrutamiento tanto de la información de Calidad de Enlace como de Ruta (o Extremo-a-Extremo), demostramos que el Análisis de Series Temporales es un enfoque prometedor para predecir con precisión, tanto la Calidad de Enlace como la Calidad de Extremo a Extremo en Redes Comunitarias.Everyday becomes more evident the key role that mobile computing and wireless technologies play in our daily activities. Being always connected, anytime, and anywhere is today more a necessity than a luxury. The ubiquitous computing scenarios created based on these technology advances allow people to provide and consume shared information. In these scenarios, the supporting communication networks are typically wireless and ad hoc. The dynamic and changing characteristics of the ad hoc networks, makes the work done by the routing layer to have a high impact on the performance of these networks. It is very important for the routing layer to quickly react to changes that happen, and even be advanced to what will happen in the near future, by applying prediction techniques. This thesis investigates whether prediction techniques can improve the routing layer of ad hoc networks. As a first step in this direction, in this thesis we explored the potentiality of a History-Based Predictor (HBP) strategy to predict the Topology Control Information (TCI) generated by routing protocols. We demonstrated that there is a high opportunity for predicting theTCI, and this prediction can be just focused on a small subset of messages. Based on our findings we implemented the OLSR-HBP predictor and evaluated it with regard to the Optimized Link State Routing (OLSR) protocol. OLSR History-Based Predictor (OLSR-HBP) achieved important decreases of TCI (signaling overhead), without disturbing the network operation, and requiring a small and affordable amount of resources. Finally, regarding the impact of Prediction on the routing data for both Link and Path (or End-to-End) Quality information, we demonstrated that Time-series analysis is a promising approach to accurately predict both Link and End-to-End Quality in Community Networks

    A new routing metric for wireless mesh networks

    Get PDF
    In Wireless Mesh Networks the main goal is to achieve the best possible quality and efficiency of data transmission between source and destination nodes. To achieve such transmission, a routing algorithm should select better paths by taking the quality of wireless links into account. Simple path selection based on minimal hop count often leads to poor performance due to the fact that paths with low hop count often have higher packet loss rates. Better paths can be obtained by characterizing the actual quality of wireless link. A number of link quality aware routing metrics such as Expected Transmission Count (ETX), Expected Transmission Time (ETT), Weighted Cumulative Expected Transmission Time (WCETT), Metric of Interference and Channel Switching (MIC), Interference Aware Metric (iAWARE) etc have been explored. This study highlights some shortcomings of these routing metrics and proposes the design of a novel metric called ETX- 3 hop, which addresses the discussed weaknesses and works more efficiently under various link quality conditions. ETX-3hop consists of a more accurate method to measure the link quality and a path metric that better captures the quality of a path. The performance of the ETX-3hop metric is compared against the original ETX with different path metrics. In extensive simulations, ETX-3hop metric outperforms the original ETX metric in terms of network throughput
    corecore