971 research outputs found

    A six-phase transverse-flux-reversal linear machine for low-speed reciprocating power generation

    Get PDF
    In this paper, a 6-phase permanent-magnet flux-reversal linear machine for low-speed reciprocating power generation is presented. By increasing the phase number, the phase current is reduced for the same rated power which results in a lower ohmic loss. In addition, the thrust force ripple can be reduced accordingly. By borrowing the transverse-flux concept, the electric loading and the magnetic loading is decoupled and the thrust density can be improved accordingly. The stator of the proposed machine adopts the modular design, and each phase is magnetically decoupled with each other which gives more flexibility and controllability of the generator. Based on the same topology, the proposed machine can be extended to a machine with an arbitrary number of phase to suit different applications.published_or_final_versio

    Fault-Tolerant Control of a Flux-switching Permanent Magnet Synchronous Machine

    Get PDF
    Je jasnĂ©, ĆŸe nejĂșspěơnějĆĄĂ­ konstrukce zahrnuje postup vĂ­cefĂĄzovĂ©ho ƙízenĂ­, ve kterĂ©m kaĆŸdĂĄ fĂĄze mĆŻĆŸe bĂœt povaĆŸovĂĄna za samostatnĂœ modul. Provoz kterĂ©koliv z jednotek musĂ­ mĂ­t minimĂĄlnĂ­ vliv na ostatnĂ­, a to tak, ĆŸe v pƙípadě selhĂĄnĂ­ jednĂ© jednotky ostatnĂ­ mohou bĂœt v provozu neovlivněny. ModulĂĄrnĂ­ ƙeĆĄenĂ­ vyĆŸaduje minimĂĄlnĂ­ elektrickĂ©, magnetickĂ© a tepelnĂ© ovlivněnĂ­ mezi fĂĄzemi ƙízenĂ­ (měniče). SynchronnĂ­ stroje s pulznĂ­m tokem a permanentnĂ­mi magnety se jevĂ­ jako atraktivnĂ­ typ stroje, jejĂ­ĆŸ pƙednostmi jsou vysokĂœ kroutĂ­cĂ­ moment, jednoduchĂĄ a robustnĂ­ konstrukce rotoru a skutečnost, ĆŸe permanentnĂ­ magnety i cĂ­vky jsou umĂ­stěny společně na statoru. FS-PMSM jsou poměrně novĂ© typy stƙídavĂ©ho stroje stator-permanentnĂ­ magnet, kterĂ© pƙedstavujĂ­ vĂœznamnĂ© pƙednosti na rozdĂ­l od konvenčnĂ­ch rotorĆŻ - velkĂœ kroutĂ­cĂ­ moment, vysokĂœ točivĂœ moment, v podstatě sinusovĂ© zpětnĂ© EMF kƙivky, zĂĄroveƈ kompaktnĂ­ a robustnĂ­ konstrukce dĂ­ky umĂ­stěnĂ­ magnetĆŻ a vinutĂ­ kotvy na statoru. SrovnĂĄnĂ­ vĂœsledkĆŻ mezi FS-PMSM a klasickĂœmi motory na povrchu upevněnĂœmi PM (SPM) se stejnĂœmi parametry ukazuje, ĆŸe FS-PMSM vykazuje větĆĄĂ­ vzduchovĂ© mezery hustoty toku, vyĆĄĆĄĂ­ točivĂœ moment na ztrĂĄty v mědi, ale takĂ© vyĆĄĆĄĂ­ pulzaci dĂ­ky reluktančnĂ­mu momentu. Pro stroje buzenĂ© permanentnĂ­mi magnety se jednĂĄ o tradičnĂ­ rozpor mezi poĆŸadavkem na vysokĂœ kroutĂ­cĂ­ moment pod zĂĄkladnĂ­ rychlostĂ­ (oblast konstantnĂ­ho momentu) a provozem nad zĂĄkladnĂ­ rychlostĂ­ (oblast konstantnĂ­ho vĂœkonu), zejmĂ©na pro aplikace v hybridnĂ­ch vozidlech. Je pƙedloĆŸena novĂĄ topologie synchronnĂ­ho stroje s permanentnĂ­mi magnety a spĂ­nanĂœm tokem odolnĂ©ho proti poruchĂĄm, kterĂĄ je schopnĂĄ provozu během vinutĂ­ naprĂĄzdno a zkratovanĂ©ho vinutĂ­ i poruchĂĄch měniče. SchĂ©ma je zaloĆŸeno na dvojitě vinutĂ©m motoru napĂĄjenĂ©m ze dvou oddělenĂœch vektorově ƙízenĂœch napěƄovĂœch zdrojĆŻ. VinutĂ­ jsou uspoƙádĂĄna takovĂœm zpĆŻsobem, aby tvoƙila dvě nezĂĄvislĂ© a oddělenĂ© sady. Simulace a experimentĂĄlnĂ­ vĂœzkum zpƙesnĂ­ vĂœkon během obou scĂ©náƙƯ jak za normĂĄlnĂ­ho provozu, tak za poruch včetně zkratovĂœch zĂĄvad a ukĂĄĆŸĂ­ robustnost pohonu za těchto podmĂ­nek. Tato prĂĄce byla publikovĂĄna v deseti konferenčnĂ­ch pƙíspěvcĂ­ch, dvou časopisech a kniĆŸnĂ­ kapitole, kde byly pƙedstaveny jak topologie pohonu a aplikovanĂĄ ƙídĂ­cĂ­ schĂ©mata, tak analĂœzy jeho schopnosti odolĂĄvat poruchĂĄm.It has become clear that the most successful design approach involves a multiple phase drive in which each phase may be regarded as a single-module. The operation of any one module must have minimal impact upon the others, so that in the event of that module failing the others can continue to operate unaffected. The modular approach requires that there should be minimal electrical, magnetic and thermal interaction between phases of the drive. Flux-Switching permanent magnet synchronous machines (FS-PMSM) have recently emerged as an attractive machine type virtue of their high torque densities, simple and robust rotor structure and the fact that permanent magnets and coils are both located on the stator. Flux-switching permanent magnet (FS-PMSM) synchronous machines are a relatively new topology of stator PM brushless machine. They exhibit attractive merits including the large torque capability and high torque (power) density, essentially sinusoidal back-EMF waveforms, as well as having a compact and robust structure due to both the location of magnets and armature windings in the stator instead of the rotor as those in the conventional rotor-PM machines. The comparative results between a FS-PMSM and a traditional surface-mounted PM (SPM) motor having the same specifications reveal that FS-PMSM exhibits larger air-gap flux density, higher torque per copper loss, but also a higher torque ripple due to cogging -torque. However, for solely permanent magnets excited machines, it is a traditional contradiction between the requests of high torque capability under the base-speed (constant torque region) and wide speed operation above the base speed (constant power region) especially for hybrid vehicle applications. A novel fault-tolerant FS-PMSM drive topology is presented, which is able to operate during open- and short-circuit winding and converter faults. The scheme is based on a dual winding motor supplied from two separate vector-controlled voltage-sourced inverter drives. The windings are arranged in a way so as to form two independent and isolated sets. Simulation and experimental work will detail the driver’s performance during both healthy- and faulty- scenarios including short-circuit faults and will show the drive robustness to operate in these conditions. The work has been published in ten conference papers, two journal papers and a book chapter, presenting both the topology of the drive and the applied control schemes, as well as analysing the fault-tolerant capabilities of the drive.

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems

    Get PDF
    In this paper it is shown how to obtain a low-cost, high-resolution and fault-robust position sensing system for permanent magnet synchronous motor drives operating in safety-critical systems, by combining high-frequency signal injection with binary Hall-effect sensors. It is shown that the position error signal obtained via high-frequency signal injection can be merged easily into the quantization-harmonic-decoupling vector tracking observer used to process the Hall-effect sensor signals. The resulting algorithm provides accurate, high-resolution estimates of speed and position throughout the entire speed range; compared to state-of-the-art drives using Hall-effect sensors alone, the low speed performance is greatly improved in healthy conditions and also following position sensor faults. It is envisaged that such a sensing system can be successfully used in applications requiring IEC 61508 SIL 3 or ISO 26262 ASIL D compliance, due to its extremely high mean time to failure and to the very fast recovery of the drive following Hall-effect sensor faults at low speeds. Extensive simulation and experimental results are provided on a 3.7 kW permanent magnet drive

    A Novel Matrix Transformation for Decoupled Control of Modular Multiphase PMSM Drives

    Get PDF
    When multiphase drives are used for specific applications, the modular solutions are preferred as they use consolidated power electronics technologies. The literature reports two modeling approaches for multiphase machines having a modular configuration of the stator winding. The first approach is the vector space decomposition (VSD) that models the energy conversion as for an equivalent three-phase machine. The main alternative to the VSD is the multistator (MS) modeling that emphasizes machine modularity in terms of torque production. Both approaches have advantages and disadvantages for multiphase machines with a modular structure. Therefore, this article aims to combine the VSD and MS approaches, defining a new matrix transformation and, hence, developing a new modeling approach for multiphase machines with a modular structure. The proposed transformation allows a decoupled and independent torque control of the sets composing the machine, preserving the torque regulation's modularity. Together with a new vector control scheme, it has been applied to a modular permanent magnet synchronous machine (PMSM) with a nonstandard spatial shift between windings. Experimental results are presented for a nine-phase PMSM prototype with a triple-three-phase stator winding configuration

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    SRM drives for electric traction

    Get PDF
    "GAECE" -- PortadaDescripciĂł del recurs: 11 maig 2020GAECE (Grup d’accionaments elĂšctrics amb commutaciĂł electrĂČnica). The group of electronically commutated electrical drives is a research team of Universitat PolitĂšcnica de Catalunya (UPC BARCELONATECH), which conducts investigation in four areas: electrical drives, power electronics, mechanics and energy and sustainability. Regarding electrical drives, research focuses on the development of new reluctance, permanent magnet and hybrid electrical drives. The main goal of those electrical drives is the integration of the power converter/controller and the mechanical transmission, being specially intended for the traction of light electric vehicles. That research is carried out by using the analysis of finite elements, taking into account eco-design criteria, considering new materials and new control strategies.First editio

    Overview of Stator Slot-opening Permanent Magnet Machines

    Get PDF
    In the past few decades, the stator permanent magnet (PM) machines have attracted much research attention because of their reliable rotor structure, high power density, wide speed range, and strong fault-tolerant ability. Among the recently proposed stator PM machine topologies, the stator slot-opening PM (SS-PM) machines are becoming increasingly popular because of their higher stator space utilization and robust rotor structure. According to the SS-PM magnetization direction, the SS-PM machines can be classified into three categories, namely, the tangentially magnetized stator slot-opening PM (TMSS-PM) machines, the radially magnetized stator slot-opening PM (RMSS-PM) machines, and the compound magnetized stator slot-opening PM (CMSS-PM) machines. The associated working principle and electromagnetic performance of different SS-PM machines can be diverse. Therefore, this paper gives an overview of SS-PM machines in terms of machine design, working principle, and machine performance. A qualitative performance evaluation and comparative study of SS-PM machines are presented, and the future challenges and potential opportunities in the SS-PM machine design are discussed

    Investigation on Multi-Physics Modelling of Fault Tolerant Stator Mounted Permanent Magnet Machines

    Get PDF
    This thesis investigates the stator mounted permanent magnet machines from the point of view of fault tolerant capability. The topologies studied are switched flux (and its derivatives C-Core, E-Core and modular), doubly salient and flux reversal permanent magnet machines. The study focuses on fault mode operation of these machines looking at severe conditions like short-circuit and irreversible demagnetization. The temperature dependence of the permanent magnet properties is taken into account. A complex multi-physics model is developed in order to assess the thermal state evolution of the switched flux machine during both healthy and faulty operation modes. This model couples the electro-mechanical domain with the thermal one, thus being able to consider a large range of operating conditions. It also solves issues such as large computational time and resources while still maintaining the accuracy. Experimental results are also provided for each chapter. A hierarchy in terms of fault tolerant capability is established. A good compromise can be reached between performance and fault tolerant capability. The mechanism of the magnet irreversible demagnetization process is explained based on magnetic circuit configuration. It is also found that the studied topology are extremely resilient against the demagnetizing influence of the short-circuit current and the magnet demagnetization is almost only affected by temperature
    • 

    corecore