1,788 research outputs found

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks

    Joint Channel Assignment and Opportunistic Routing for Maximizing Throughput in Cognitive Radio Networks

    Full text link
    In this paper, we consider the joint opportunistic routing and channel assignment problem in multi-channel multi-radio (MCMR) cognitive radio networks (CRNs) for improving aggregate throughput of the secondary users. We first present the nonlinear programming optimization model for this joint problem, taking into account the feature of CRNs-channel uncertainty. Then considering the queue state of a node, we propose a new scheme to select proper forwarding candidates for opportunistic routing. Furthermore, a new algorithm for calculating the forwarding probability of any packet at a node is proposed, which is used to calculate how many packets a forwarder should send, so that the duplicate transmission can be reduced compared with MAC-independent opportunistic routing & encoding (MORE) [11]. Our numerical results show that the proposed scheme performs significantly better that traditional routing and opportunistic routing in which channel assignment strategy is employed.Comment: 5 pages, 4 figures, to appear in Proc. of IEEE GlobeCom 201

    CROR: Coding-Aware Opportunistic Routing in Multi-Channel Cognitive Radio Networks

    Full text link
    Cognitive radio (CR) is a promising technology to improve spectrum utilization. However, spectrum availability is uncertain which mainly depends on primary user's (PU's) behaviors. This makes it more difficult for most existing CR routing protocols to achieve high throughput in multi-channel cognitive radio networks (CRNs). Inter-session network coding and opportunistic routing can leverage the broadcast nature of the wireless channel to improve the performance for CRNs. In this paper we present a coding aware opportunistic routing protocol for multi-channel CRNs, cognitive radio opportunistic routing (CROR) protocol, which jointly considers the probability of successful spectrum utilization, packet loss rate, and coding opportunities. We evaluate and compare the proposed scheme against three other opportunistic routing protocols with multichannel. It is shown that the CROR, by integrating opportunistic routing with network coding, can obtain much better results, with respect to throughput, the probability of PU-SU packet collision and spectrum utilization efficiency.Comment: 6 pages, 8 figures, to appear in Proc. of IEEE GlobeCom 201
    • …
    corecore