1,564 research outputs found

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    Strategies to enhance the 3T1D-DRAM cell variability robustness beyond 22 nm

    Get PDF
    3T1D cell has been stated as a valid alternative to be implemented on L1 memory cache to substitute 6T, highly affected by device variability as technology dimensions are reduced. In this work, we have shown that 22 nm 3T1D memory cells present significant tolerance to high levels of device parameter fluctuation. Moreover, we have observed that when variability is considered the write access transistor becomes a significant detrimental element on the 3T1D cell performance. Furthermore, resizing and temperature control have been presented as some valid strategies in order to mitigate the 3T1D cell variability.Peer ReviewedPostprint (author's final draft

    RAMPART: RowHammer Mitigation and Repair for Server Memory Systems

    Full text link
    RowHammer attacks are a growing security and reliability concern for DRAMs and computer systems as they can induce many bit errors that overwhelm error detection and correction capabilities. System-level solutions are needed as process technology and circuit improvements alone are unlikely to provide complete protection against RowHammer attacks in the future. This paper introduces RAMPART, a novel approach to mitigating RowHammer attacks and improving server memory system reliability by remapping addresses in each DRAM in a way that confines RowHammer bit flips to a single device for any victim row address. When RAMPART is paired with Single Device Data Correction (SDDC) and patrol scrub, error detection and correction methods in use today, the system can detect and correct bit flips from a successful attack, allowing the memory system to heal itself. RAMPART is compatible with DDR5 RowHammer mitigation features, as well as a wide variety of algorithmic and probabilistic tracking methods. We also introduce BRC-VL, a variation of DDR5 Bounded Refresh Configuration (BRC) that improves system performance by reducing mitigation overhead and show that it works well with probabilistic sampling methods to combat traditional and victim-focused mitigation attacks like Half-Double. The combination of RAMPART, SDDC, and scrubbing enables stronger RowHammer resistance by correcting bit flips from one successful attack. Uncorrectable errors are much less likely, requiring two successful attacks before the memory system is scrubbed.Comment: 16 pages, 13 figures. A version of this paper will appear in the Proceedings of MEMSYS2
    • …
    corecore