648 research outputs found

    Inferring dynamic genetic networks with low order independencies

    Full text link
    In this paper, we propose a novel inference method for dynamic genetic networks which makes it possible to face with a number of time measurements n much smaller than the number of genes p. The approach is based on the concept of low order conditional dependence graph that we extend here in the case of Dynamic Bayesian Networks. Most of our results are based on the theory of graphical models associated with the Directed Acyclic Graphs (DAGs). In this way, we define a minimal DAG G which describes exactly the full order conditional dependencies given the past of the process. Then, to face with the large p and small n estimation case, we propose to approximate DAG G by considering low order conditional independencies. We introduce partial qth order conditional dependence DAGs G(q) and analyze their probabilistic properties. In general, DAGs G(q) differ from DAG G but still reflect relevant dependence facts for sparse networks such as genetic networks. By using this approximation, we set out a non-bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real data analysis. The inference procedure is implemented in the R package 'G1DBN' freely available from the CRAN archive

    Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes

    Get PDF
    <b>Method:</b> Dynamic Bayesian networks (DBNs) have been applied widely to reconstruct the structure of regulatory processes from time series data, and they have established themselves as a standard modelling tool in computational systems biology. The conventional approach is based on the assumption of a homogeneous Markov chain, and many recent research efforts have focused on relaxing this restriction. An approach that enjoys particular popularity is based on a combination of a DBN with a multiple changepoint process, and the application of a Bayesian inference scheme via reversible jump Markov chain Monte Carlo (RJMCMC). In the present article, we expand this approach in two ways. First, we show that a dynamic programming scheme allows the changepoints to be sampled from the correct conditional distribution, which results in improved convergence over RJMCMC. Second, we introduce a novel Bayesian clustering and information sharing scheme among nodes, which provides a mechanism for automatic model complexity tuning. <b>Results:</b> We evaluate the dynamic programming scheme on expression time series for Arabidopsis thaliana genes involved in circadian regulation. In a simulation study we demonstrate that the regularization scheme improves the network reconstruction accuracy over that obtained with recently proposed inhomogeneous DBNs. For gene expression profiles from a synthetically designed Saccharomyces cerevisiae strain under switching carbon metabolism we show that the combination of both: dynamic programming and regularization yields an inference procedure that outperforms two alternative established network reconstruction methods from the biology literature

    Edge-Based Health Care Monitoring System: Ensemble of Classifier Based Model

    Get PDF
    Health Monitoring System (HMS) is an excellent tool that actually saves lives. It makes use of transmitters to gather information and transmits it wirelessly to a receiver. Essentially, it is much more practical than the large equipment that the majority of hospitals now employ and continuously checks a patient's health data 24/7. The primary goal of this research is to develop a three-layered Ensemble of Classifier model on Edge based Healthcare Monitoring System (ECEHMS) and Gauss Iterated Pelican Optimization Algorithm (GIPOA) including data collection layer, data analytics layer, and presentation layer. As per our ECEHMS-GIPOA, the healthcare dataset is collected from the UCI repository. The data analytics layer performs preprocessing, feature extraction, dimensionality reduction and classification. Data normalization will be done in preprocessing step. Statistical features (Min/Max, SD, Mean, Median), improved higher order statistical features (Skewness, Kurtosis, Entropy), and Technical indicator based features were extracted during Feature Extraction step. Improved Fuzzy C-means clustering (FCM) will be used for handling the Dimensionality reduction issue by clustering the appropriate feature set from the extracted features. Ensemble model is introduced to predict the disease stage that including the models like Deep Maxout Network (DMN), Improved Deep Belief Network (IDBN), and Recurrent Neural Network (RNN). Also, the enhancement in prediction/classification accuracy is assured via optimal training. For which, a GIPOA is introduced. Finally, ECEHMS-GIPOA performance is compared with other conventional approaches like ASO, BWO, SLO, SSO, FPA, and POA

    Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification Model

    Get PDF
    Biometric security has become a main concern in the data security field. Over the years, initiatives in the biometrics field had an increasing growth rate. The multimodal biometric method with greater recognition and precision rate for smart cities remains to be a challenge. By comparison, made with the single biometric recognition, we considered the multimodal biometric recognition related to finger vein and fingerprint since it has high security, accurate recognition, and convenient sample collection. This article presents a Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification (MFFODL-MBV) model. The presented MFFODL-MBV technique performs biometric verification using multiple biometrics such as fingerprint, DNA, and microarray. In the presented MFFODL-MBV technique, EfficientNet model is employed for feature extraction. For biometric recognition, MFFO algorithm with long short-term memory (LSTM) model is applied with MFFO algorithm as hyperparameter optimizer. To ensure the improved outcomes of the MFFODL-MBV approach, a widespread experimental analysis was performed. The wide-ranging experimental analysis reported improvements in the MFFODL-MBV technique over other models

    A Particle Swarm Optimization-based Flexible Convolutional Auto-Encoder for Image Classification

    Full text link
    Convolutional auto-encoders have shown their remarkable performance in stacking to deep convolutional neural networks for classifying image data during past several years. However, they are unable to construct the state-of-the-art convolutional neural networks due to their intrinsic architectures. In this regard, we propose a flexible convolutional auto-encoder by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional convolutional auto-encoder. We also design an architecture discovery method by using particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed flexible convolutional auto-encoder with much less computational resource and without any manual intervention. We use the designed architecture optimization algorithm to test the proposed flexible convolutional auto-encoder through utilizing one graphic processing unit card on four extensively used image classification datasets. Experimental results show that our work in this paper significantly outperform the peer competitors including the state-of-the-art algorithm.Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems, 201

    Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection

    Get PDF
    Abstract Background The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli. Results We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data. Conclusions Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus

    On the application of reservoir computing networks for noisy image recognition

    Get PDF
    Reservoir Computing Networks (RCNs) are a special type of single layer recurrent neural networks, in which the input and the recurrent connections are randomly generated and only the output weights are trained. Besides the ability to process temporal information, the key points of RCN are easy training and robustness against noise. Recently, we introduced a simple strategy to tune the parameters of RCNs. Evaluation in the domain of noise robust speech recognition proved that this method was effective. The aim of this work is to extend that study to the field of image processing, by showing that the proposed parameter tuning procedure is equally valid in the field of image processing and conforming that RCNs are apt at temporal modeling and are robust with respect to noise. In particular, we investigate the potential of RCNs in achieving competitive performance on the well-known MNIST dataset by following the aforementioned parameter optimizing strategy. Moreover, we achieve good noise robust recognition by utilizing such a network to denoise images and supplying them to a recognizer that is solely trained on clean images. The experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81 percent on the clean test data of the MNIST benchmark and that the proposed RCN-based denoiser can effectively reduce the error rate on the various types of noise. (c) 2017 Elsevier B.V. All rights reserved

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    MICRAT: A Novel Algorithm for Inferring Gene Regulatory Networks Using Time Series Gene Expression Data

    Get PDF
    Background: Reconstruction of gene regulatory networks (GRNs), also known as reverse engineering of GRNs, aims to infer the potential regulation relationships between genes. With the development of biotechnology, such as gene chip microarray and RNA-sequencing, the high-throughput data generated provide us with more opportunities to infer the gene-gene interaction relationships using gene expression data and hence understand the underlying mechanism of biological processes. Gene regulatory networks are known to exhibit a multiplicity of interaction mechanisms which include functional and non-functional, and linear and non-linear relationships. Meanwhile, the regulatory interactions between genes and gene products are not spontaneous since various processes involved in producing fully functional and measurable concentrations of transcriptional factors/proteins lead to a delay in gene regulation. Many different approaches for reconstructing GRNs have been proposed, but the existing GRN inference approaches such as probabilistic Boolean networks and dynamic Bayesian networks have various limitations and relatively low accuracy. Inferring GRNs from time series microarray data or RNA-sequencing data remains a very challenging inverse problem due to its nonlinearity, high dimensionality, sparse and noisy data, and significant computational cost, which motivates us to develop more effective inference methods. Results: We developed a novel algorithm, MICRAT (Maximal Information coefficient with Conditional Relative Average entropy and Time-series mutual information), for inferring GRNs from time series gene expression data. Maximal information coefficient (MIC) is an effective measure of dependence for two-variable relationships. It captures a wide range of associations, both functional and non-functional, and thus has good performance on measuring the dependence between two genes. Our approach mainly includes two procedures. Firstly, it employs maximal information coefficient for constructing an undirected graph to represent the underlying relationships between genes. Secondly, it directs the edges in the undirected graph for inferring regulators and their targets. In this procedure, the conditional relative average entropies of each pair of nodes (or genes) are employed to indicate the directions of edges. Since the time delay might exist in the expression of regulators and target genes, time series mutual information is combined to cooperatively direct the edges for inferring the potential regulators and their targets. We evaluated the performance of MICRAT by applying it to synthetic datasets as well as real gene expression data and compare with other GRN inference methods. We inferred five 10-gene and five 100-gene networks from the DREAM4 challenge that were generated using the gene expression simulator GeneNetWeaver (GNW). MICRAT was also used to reconstruct GRNs on real gene expression data including part of the DNA-damaged response pathway (SOS DNA repair network) and experimental dataset in E. Coli. The results showed that MICRAT significantly improved the inference accuracy, compared to other inference methods, such as TDBN, etc. Conclusion: In this work, a novel algorithm, MICRAT, for inferring GRNs from time series gene expression data was proposed by taking into account dependence and time delay of expressions of a regulator and its target genes. This approach employed maximal information coefficients for reconstructing an undirected graph to represent the underlying relationships between genes. The edges were directed by combining conditional relative average entropy with time course mutual information of pairs of genes. The proposed algorithm was evaluated on the benchmark GRNs provided by the DREAM4 challenge and part of the real SOS DNA repair network in E. Coli. The experimental study showed that our approach was comparable to other methods on 10-gene datasets and outperformed other methods on 100-gene datasets in GRN inference from time series datasets
    corecore