192 research outputs found

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology

    셀룰러 사이드링크 성능 향상을 위한 상위계층 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 박세웅.In typical cellular communications, User Equipments (UEs) have always had to go through a Base Station (BS) to communicate with each other, e.g., a UE transmits a packet to a BS via uplink and then the BS transmits the packet to another UE via downlink. Although the communication method can serve UEs efficiently, the communication method can cause latency problems and overload problems in BS. Thus, sidelink has been proposed to overcome these problems in 3GPP release 12. Through sidelink, UEs can communicate directly with each other. There are two representative communications using sidelink, i.e., Device-to-Device (D2D) communication and Vehicle-to-Vehicle (V2V) communication. In this dissertation, we consider three strategies to enhance the performances of D2D and V2V communications: (i) efficient feedback mechanism for D2D communications, (ii) context-aware congestion control scheme for V2V communication, and (iii) In-Device Coexistence (IDC)-aware LTE and NR sidelink resource allocation scheme. Firstly, in the related standard, there is no feedback mechanism for D2D communication because D2D communications only support broadcast-type communications. A feedback mechanism is presented for D2D communications. Through our proposed mechanism, UEs can use the feedback mechanism without the help of BS and UEs do not need additional signals to allocate feedback resources. We also propose a rate adaptation algorithm, which consider in-band emission problem, on top of the proposed feedback mechanism. We find that our rate adaptation achieves higher and stable throughput compared with the legacy scheme that complies to the standard. Secondly, we propose a context-aware congestion control scheme for LTE-V2V communication. Through LTE-V2V communication, UEs transmit Cooperative Awareness Message (CAM), which is a periodic message, and Decentralized Environmental Notification Message (DENM), which is a event-driven message and allows one-hop relay. The above two messages have different characteristics and generation rule. Thus, it is difficult and inefficient to apply the same congestion control scheme to two messages. We propose a congestion control schemes for each message. Through the proposed congestion control schemes, UEs decide whether to transmit according to their situation. Through simulation results, we show that our proposed schemes outperform comparison schemes as well as the legacy scheme. Finally, we propose a NR sidelink resource allocation scheme based on multi-agent reinforcement learning, which awares a IDC problem between LTE and NR in Intelligent Transport System (ITS) band. First, we model a realistic IDC interference based on spectrum emission mask specified at the standard. Then, we formulate the resource allocation as a multi-agent reinforcement learning with fingerprint method. Each UE achieves its local observation and rewards, and learns its policy to increase its rewards through updating Q-network. Through simulation results, we observe that the proposed resource allocation scheme further improves Packet Delivery Ratio (PDR) performances compared to the legacy scheme.전형적인 셀룰러 통신에서는, 단말들은 서로 통신하기 위해 항상 기지국을 거쳐야 한다. 예를 들면, 단말이 uplink를 통해 기지국에게 패킷을 전송한 다음 기지국은 downlink를 통해 해당 패킷을 전송해준다. 이러한 통신방식은 단말들에게 효율적으로 서비스를 제공할 수 있지만, 상황에 따라서는 지연문제와 기지국의 과부하 문제를 야기할 수 있다. 따라서 3GPP release12에서 이러한 문제점들을 극복하기 위해 sidelink가 제안되었다. 덕분에 단말들은 sidelink를 통해서 서로 직접 통신을 할 수 있게 되었다. Sidelink를 사용하는 두 가지 대표적인 통신은 D2D(Device-to-Device) 통신과 V2V(Vehicle-to-Vehicle) 통신이다. 본 논문에서는 D2D 와 V2V 통신 성능을 향상시키기 위한 세가지 전략을 고려한다. (i) D2D 통신을 위한 효율적인 피드백 메커니즘, (ii) V2V 통신을 위한 상황인식기반 혼잡제어 기법, 그리고 (iii) IDC(In-Device Coexistence) 인지 기반 sidelink 자원 할당 방식. 첫째, 관련 표준에는 D2D 통신이 브로드캐스트 유형의 통신만을 지원하기 때문에 D2D 통신에 대한 피드백 메커니즘이 없다. 우리는 이러한 한계점을 극복하고자 D2D 통신을 위한 피드백 메커니즘을 제안한다. 제안된 메커니즘을 통해, 단말은 기지국의 도움없이 피드백 메커니즘을 사용할 수 있으며 피드백 자원을 할당하기 위한 추가 신호를 필요로 하지 않는다. 우리는 또한 제안된 피드백 메커니즘위에서 동작할 수 있는 data rate 조절 기법을 제안하였다. 우리는 시뮬레이션 결과를 통하여, 제안한 data rate 조절 기법이 기존 방식보다 더 높고 안정적인 수율을 제공하는 것을 확인하였다. 둘째, LTE-V2V 통신을 위한 상황 인지 기반 혼잡 제어 기법을 제안한다. LTE-V2V 통신에서 단말들은 주기적인 메시지인 CAM(Cooperative Awareness Message) 및 비주기적 메시지이며 one-hop릴레이를 허용하는 DENM(Decentralized Environmental Notification Message)를 전송한다. 위의 두 메시지는 특성과 생성 규칙이 다르기 때문에 동일한 혼잡 제어 기법을 적용하는 것은 비효율적이다. 따라서 우리는 각 메시지에 적용할 수 있는 혼잡 제어 기법들을 제안한다. 제안된 기법들을 통해서 단말들은 그들의 상황에 따라서 전송 여부를 결정하게 된다. 시뮬레이션 결과를 통해 제안된 기법이 기존 표준 방식 뿐만 아니라 최신의 비교 기법들보다 우수한 성능을 얻는 것을 확인하였다. 마지막으로 ITS(Intelligent Transport System)대역에서 LTE와 NR사이의 IDC문제를 고려하는 NR sidelink 자원할당 기법을 제안한다. 먼저, 표준에 지정된 스펙트럼 방출 마스크를 기반으로 현실적인 IDC 간섭을 모델링한다. 그런 다음 다중 에이전트 강화학습으로 자원할당 기법을 제안한다. 각 단말들은 자신들의 주변 환경을 관측하고 관측된 환경을 기반으로 행동하여 보상을 얻고 Q-network을 자신의 보상을 증가시키도록 정책을 업데이트 및 학습한다. 우리는 시뮬레이션 결과를 통하여 제안된 자원할당 박식이 기존기법 대비하여 PDR(Packet Delivery Ratio) 성능을 향상시키는 것을 확인하였다.Introduction 1 Efficient feedback mechanism for LTE-D2D Communication 8 CoCo: Context-aware congestion control scheme for C-V2X communications 35 IDC-aware resource allocation based on multi-agents reinforcement learning 67 Concluding remarks 84 Abstract(In Korean) 96 감사의 글 99Docto

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed

    Radio resource management for V2V multihop communication considering adjacent channel interference

    Get PDF
    This paper investigates schemes for multihop scheduling and power control for vehicle-to-vehicle (V2V) multicast communication, taking into account the effects of both co-channel interference and adjacent channel interference, such that requirements on latency or age of information (AoI) are satisfied. Optimal performance can be achieved by formulating and solving mixed Boolean linear programming (MBLP) optimization problems for various performance metrics, including network throughput and connectivity. Fairness among network nodes (vehicles) is addressed by considering formulations that maximizes the worst-case network node performance. Solving the optimization problem comes at the cost of significant computational complexity for large networks and requires that (slow) channel state information is gathered at a central point. To address these issues, a clustering method is proposed to partition the optimization problem into a set of smaller problems, which reduces the overall computational complexity, and a decentralized algorithm that does not need channel state information is provided

    Clustering algorithm for D2D communication in next generation cellular networks : thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

    Get PDF
    Next generation cellular networks will support many complex services for smartphones, vehicles, and other devices. To accommodate such services, cellular networks need to go beyond the capabilities of their previous generations. Device-to-Device communication (D2D) is a key technology that can help fulfil some of the requirements of future networks. The telecommunication industry expects a significant increase in the density of mobile devices which puts more pressure on centralized schemes and poses risk in terms of outages, poor spectral efficiencies, and low data rates. Recent studies have shown that a large part of the cellular traffic pertains to sharing popular contents. This highlights the need for decentralized and distributive approaches to managing multimedia traffic. Content-sharing via D2D clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. Different studies have established that D2D communication in clusters can improve spectral and energy efficiency, achieve low latency while increasing the capacity of the network. To achieve effective content-sharing among users, appropriate clustering strategies are required. Therefore, the aim is to design and compare clustering approaches for D2D communication targeting content-sharing applications. Currently, most of researched and implemented clustering schemes are centralized or predominantly dependent on Evolved Node B (eNB). This thesis proposes a distributed architecture that supports clustering approaches to incorporate multimedia traffic. A content-sharing network is presented where some D2D User Equipment (DUE) function as content distributors for nearby devices. Two promising techniques are utilized, namely, Content-Centric Networking and Network Virtualization, to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multi-factor clustering algorithm is proposed for grouping the DUEs sharing a common interest. Various performance parameters such as energy consumption, area spectral efficiency, and throughput have been considered for evaluating the proposed algorithm. The effect of number of clusters on the performance parameters is also discussed. The proposed algorithm has been further modified to allow for a trade-off between fairness and other performance parameters. A comprehensive simulation study is presented that demonstrates that the proposed clustering algorithm is more flexible and outperforms several well-known and state-of-the-art algorithms. The clustering process is subsequently evaluated from an individual user’s perspective for further performance improvement. We believe that some users, sharing common interests, are better off with the eNB rather than being in the clusters. We utilize machine learning algorithms namely, Deep Neural Network, Random Forest, and Support Vector Machine, to identify the users that are better served by the eNB and form clusters for the rest of the users. This proposed user segregation scheme can be used in conjunction with most clustering algorithms including the proposed multi-factor scheme. A comprehensive simulation study demonstrates that with such novel user segregation, the performance of individual users, as well as the whole network, can be significantly improved for throughput, energy consumption, and fairness

    Device-to-device communications for 5G Radio Access Networks

    Get PDF
    Nowadays it is very popular to share video clips and images to one’s social network in the proximity. Direct device-to-device (D2D) communication is one of the means to respond to this requirement. D2D offers users improved end-to-end latency times, and additionally can provide higher data rates. At the same time the overall cellular network congestion decreases. D2D is also known as Proximity Services (ProSe). LTE is missing direct D2D communication. Currently D2D for 5G is standardised in the 3rd Generation Partnership Project (3GPP) Releases 12, and in parallel Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) project has D2D as one of its research topics. Multiple articles have been published about D2D communication. This thesis is a literature based thesis following D2D communication in 5G literature. The scope is to describe similarities and differences found in Technical Reports and Technical Specifications of the 3GPP Release 12, in deliverables written in METIS project and in some selected D2D related publications about D2D communications. 3GPP Release 12 concentrates on ProSe at least for public safety. ProSe communication out-of-coverage is only for public safety purposes. METIS provides multiple solutions for diverse D2D topics, for example, device discovery, radio resource management, mobility management and relaying. METIS provides solutions for D2D communication not yet mature enough for development and implementation but which might be realized in the future.Nykyisin on suosittua lähettää lyhyitä videoita tai kuvia läheisyydessä oleville ystäville. Laitteiden välinen suora kommunikointi eli D2D-viestintä tuo ratkaisun tähän vaatimukseen. D2D-viestinnän ansiosta viive lyhenee ja lisäksi siirtonopeudet kasvavat. Samaan aikaan koko verkon kuormitus vähenee. Suora kahden laitteen välinen kommunikointi puuttuu LTE:stä. Tällä hetkellä 3GPP Release 12 standardisoi suoraa kahden laitteen välistä kommunikointia. Samanaikaisesti Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) –projektin yhtenä tutkimuskohteenaan on kahden laitteen välinen suora kommunikointi, Lisäksi on lukuisia julkaisuja liittyen D2D-viestintään. Tämä diplomityö perustuu kirjallisuuteen. Sen tavoitteena on selvittää, miten kahden laitteen välistä suoraa kommunikointia on kuvattu 3GPP Release 12:ta teknisissä spesifikaatioissa, METIS-projektin julkaisuissa sekä muutamassa valitussa tieteellisessä julkaisussa. Tavoitteena on selvittää D2D-viestinnän yhtäläisyyksiä sekä poikkeamia. 3PGG Release 12 standardointi keskittyy D2D-viestinnän käyttöön ainakin julkisessa pelastustyössä. D2D-viestinnän tulee ainakin julkisessa pelastustyössä toimia myös siellä missä matkapuhelinverkko ei toimi tai sitä ei ole olemassa. METIS tarjoaa useita ratkaisuja D2D-viestinnän eri osa-alueille, esimerkiksi laitteiden tunnistamiseen, resurssien hallintaan, liikkuvuuden hallintaa ja viestien edelleen lähettämiseen. METIS-projekti on tuottanut D2D-viestinnän ratkaisuja, joiden toteuttaminen on järkevää ja mahdollista vasta tulevaisuudessa
    corecore