60 research outputs found

    Enhanced control of DFIG-based wind power plants to comply with the international grid codes

    Get PDF
    A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the fault period in order to support the network stability. In particular, modern grid codes require wind power plants to: (1) ride-through various voltage sag and swell conditions, (2) inject reactive current into the grid during the fault period, and (3) attain swift active power restoration after the fault clearance. This thesis proposes a transient control scheme for DFIG-based wind power plants to comply with these requirements.In the first part of this thesis, the latest regulations enforced on large wind power plants are studied and compared. This study identifies the most stringent regulations defined by the international grid codes, to be further investigated in the following chapters. In the second part of this thesis, extensive simulation studies are carried out to examine the transient response of DFIG-based wind turbines under various symmetrical and asymmetrical fault conditions. Supplementary theoretical analyses are also presented to justify the observations made in the time-domain simulations results. For the first time, the impacts of phase-angle jump, voltage recovery process and sag parameters on the DFIG response are explored. The results of this study can assist researcher to identify the difficulties that hinder successful fault ride-through response of DFIG-based wind turbines, as requested by the international grid codes.In the third part of the thesis, an enhanced hysteresis-based current regulator (referred to as VBHCR) is proposed to be implemented in the rotor-side and grid-side converters of DFIG-based wind turbines. The main advantages of this current regulator are very fast transient response, simple control structure and insensitivity to the machine parameters variations. Simulation results show that on one hand the VBHCR has very good steady-state performance and on the other hand, it presents very fast/robust tracking response. Therefore, the DFIG equipped the proposed current regulator can fulfill the most stringent low-voltage ride-through requirements imposed by the international grid codes, i.e., those stipulated by the Australian grid code. In the fourth part of the thesis, a new hybrid current control scheme is introduced to enhance both low and high voltage ride-through capabilities of DFIG-based wind turbines. The proposed control scheme uses the standard PI current regulators under steady-state conditions but upon a voltage sag or swell occurrence, the supervisory control unit transfers the switching strategy of the rotor-side and grid-side converters to the hysteresis-based method. The VBHCR remains in action until the oscillation in the rotor current and dc-link voltage of DFIG suppress below the safety limit and then, the PI current regulator are activated through a re-initialization process.Finally, the conventional vector control scheme of DFIG-based wind power plants is modified to fulfill the regulations imposed on the active and reactive power responses of wind farms subject to various faults. New design strategies are suggested and their corresponding P-Q capability curves are thoroughly studied. Simulations results show that the proposed control scheme can meet the Australian regulations as the most demanding grid code. The best design strategy, with enhanced active and reactive power responses, permits the rotor-side and grid-side converters of DFIG to be temporarily overloaded during the fault period and also exploits the free capacity of the GSC to inject further reactive power to the grid. As a result, the active power generation of DFIG-based wind power plant can be retained during the fault period while its reactive power injection capacity of DFIG is also increased to further support the grid

    On-line Condition Monitoring, Fault Detection and Diagnosis in Electrical Machines and Power Electronic Converters

    Get PDF
    The objective of this PhD research is to develop robust, and non-intrusive condition monitoring methods for induction motors fed by closed-loop inverters. The flexible energy forms synthesized by these connected power electronic converters greatly enhance the performance and expand the operating region of induction motors. They also significantly alter the fault behavior of these electric machines and complicate the fault detection and protection. The current state of the art in condition monitoring of power-converter-fed electric machines is underdeveloped as compared to the maturing condition monitoring techniques for grid-connected electric machines. This dissertation first investigates the stator turn-to-turn fault modelling for induction motors (IM) fed by a grid directly. A novel and more meaningful model of the motor itself was developed and a comprehensive study of the closed-loop inverter drives was conducted. A direct torque control (DTC) method was selected for controlling IM’s electromagnetic torque and stator flux-linkage amplitude in industrial applications. Additionally, a new driver based on DTC rules, predictive control theory and fuzzy logic inference system for the IM was developed. This novel controller improves the performance of the torque control on the IM as it reduces most of the disadvantages of the classical and predictive DTC drivers. An analytical investigation of the impacts of the stator inter-turn short-circuit of the machine in the controller and its reaction was performed. This research sets a based knowledge and clear foundations of the events happening inside the IM and internally in the DTC when the machine is damaged by a turn fault in the stator. This dissertation also develops a technique for the health monitoring of the induction machine under stator turn failure. The developed technique was based on the monitoring of the off-diagonal term of the sequence component impedance matrix. Its advantages are that it is independent of the IM parameters, it is immune to the sensors’ errors, it requires a small learning stage, compared with NN, and it is not intrusive, robust and online. The research developed in this dissertation represents a significant advance that can be utilized in fault detection and condition monitoring in industrial applications, transportation electrification as well as the utilization of renewable energy microgrids. To conclude, this PhD research focuses on the development of condition monitoring techniques, modelling, and insightful analyses of a specific type of electric machine system. The fundamental ideas behind the proposed condition monitoring technique, model and analysis are quite universal and appeals to a much wider variety of electric machines connected to power electronic converters or drivers. To sum up, this PhD research has a broad beneficial impact on a wide spectrum of power-converter-fed electric machines and is thus of practical importance

    Intelligent control of induction motors

    Get PDF
    This thesis presents the development and implementation of an integral field oriented intelligent control for an induction motor (IM) drive using Fuzzy Logic Controller (FLC), and an Artificial Neural Network (ANN), employing a finite element controller and making use of a Proportional Integral (PI) adaptive controller as well. An analytical model of an induction motor drive has been developed. In order to prove the superiority of the proposed controller, the performance of this controller is compared with conventional PI-based IM drives. The performance of the proposed IM drive is investigated extensively at different operating conditions in simulation. The proposed adaptive PI-based speed controller’s performance is found to be robust and it is a potential candidate for high performance industrial drive applications. The novel work focuses on using a Finite Element Controller map (FECM) to manipulate adaptive controllers for motor control drives. A digital signal processing (DSP) board DS1104 and laboratory induction motor were used to implement the complete vector control scheme. The test results have been compared with simulated results at different dynamic operating conditions. The effectiveness of this control scheme has been evaluated, and it has been found to be more efficient than the conventional PI controller

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Modular Understanding: A Taxonomy and Toolkit for Designing Modularity in Audio Software and Hardware

    Get PDF
    Modular synthesis is a continually evolving practice. Currently, an eectivetaxonomy for analyzing modular synthesizer design does not exist, which isa signicant barrier for pedagogy and documentation. In this dissertation,I will dene new taxonomies for modular control, patching strategies, andpanel design. I will also analyze how these taxonomies can be used to in-uence the design of musical applications outside of hardware, such as mycompany Unltered Audio's software products. Finally, I will present EuroReakt, my collection of over 140 module designs for the Reaktor Blocks formatand walk through the design process of each

    Parameter identification in networks of dynamical systems

    Get PDF
    Mathematical models of real systems allow to simulate their behavior in conditions that are not easily or affordably reproducible in real life. Defining accurate models, however, is far from trivial and there is no one-size-fits-all solution. This thesis focuses on parameter identification in models of networks of dynamical systems, considering three case studies that fall under this umbrella: two of them are related to neural networks and one to power grids. The first case study is concerned with central pattern generators, i.e. small neural networks involved in animal locomotion. In this case, a design strategy for optimal tuning of biologically-plausible model parameters is developed, resulting in network models able to reproduce key characteristics of animal locomotion. The second case study is in the context of brain networks. In this case, a method to derive the weights of the connections between brain areas is proposed, utilizing both imaging data and nonlinear dynamics principles. The third and last case study deals with a method for the estimation of the inertia constant, a key parameter in determining the frequency stability in power grids. In this case, the method is customized to different challenging scenarios involving renewable energy sources, resulting in accurate estimations of this parameter

    Wind Power

    Get PDF
    This book is the result of inspirations and contributions from many researchers of different fields. A wide verity of research results are merged together to make this book useful for students and researchers who will take contribution for further development of the existing technology. I hope you will enjoy the book, so that my effort to bringing it together for you will be successful. In my capacity, as the Editor of this book, I would like to thanks and appreciate the chapter authors, who ensured the quality of the material as well as submitting their best works. Most of the results presented in to the book have already been published on international journals and appreciated in many international conferences

    Designing sound : procedural audio research based on the book by Andy Farnell

    Get PDF
    In procedural media, data normally acquired by measuring something, commonly described as sampling, is replaced by a set of computational rules (procedure) that defines the typical structure and/or behaviour of that thing. Here, a general approach to sound as a definable process, rather than a recording, is developed. By analysis of their physical and perceptual qualities, natural objects or processes that produce sound are modelled by digital Sounding Objects for use in arts and entertainments. This Thesis discusses different aspects of Procedural Audio introducing several new approaches and solutions to this emerging field of Sound Design.Em Media Procedimental, os dados os dados normalmente adquiridos através da medição de algo habitualmente designado como amostragem, são substituídos por um conjunto de regras computacionais (procedimento) que definem a estrutura típica, ou comportamento, desse elemento. Neste caso é desenvolvida uma abordagem ao som definível como um procedimento em vez de uma gravação. Através da análise das suas características físicas e perceptuais , objetos naturais ou processos que produzem som, são modelados como objetos sonoros digitais para utilização nas Artes e Entretenimento. Nesta Tese são discutidos diferentes aspectos de Áudio Procedimental, sendo introduzidas várias novas abordagens e soluções para o campo emergente do Design Sonoro

    Investigations into a multiplexed fibre interferometer for on-line, nanoscale, surface metrology

    Get PDF
    Current trends in technology are leading to a need for ever smaller and more complex featured surfaces. The techniques for manufacturing these surfaces are varied but are tied together by one limitation; the lack of useable, on-line metrology instrumentation. Current metrology methods require the removal of a workpiece for characterisation which leads to machining down-time, more intensive labour and generally presents a bottle neck for throughput. In order to establish a new method for on-line metrology at the nanoscale investigation are made into the use of optical fibre interferometry to realise a compact probe that is robust to environmental disturbance. Wavelength tuning is combined with a dispersive element to provide a moveable optical stylus that sweeps the surface. The phase variation caused by the surface topography is then analysed using phase shifting interferometry. A second interferometer is wavelength multiplexed into the optical circuit in order to track the inherent instability of the optical fibre. This is then countered using a closed loop control to servo the path lengths mechanically which additionally counters external vibration on the measurand. The overall stability is found to be limited by polarisation state evolution however. A second method is then investigated and a rapid phase shifting technique is employed in conjunction with an electro-optic phase modulator to overcome the polarisation state evolution. Closed loop servo control is realised with no mechanical movement and a step height artefact is measured. The measurement result shows good correlation with a measurement taken with a commercial white light interferometer
    corecore