984 research outputs found

    Fast Differentially Private Matrix Factorization

    Full text link
    Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC

    Privacy-preserving recommendations in context-aware mobile environments

    Get PDF
    © Emerald Publishing Limited. Purpose - This paper aims to address privacy concerns that arise from the use of mobile recommender systems when processing contextual information relating to the user. Mobile recommender systems aim to solve the information overload problem by recommending products or services to users of Web services on mobile devices, such as smartphones or tablets, at any given point in time and in any possible location. They use recommendation methods, such as collaborative filtering or content-based filtering and use aconsiderable amount of contextual information to provide relevant recommendations. However, because of privacy concerns, users are not willing to provide the required personal information that would allow their views to be recorded and make these systems usable. Design/methodology/approach - This work is focused on user privacy by providing a method for context privacy-preservation and privacy protection at user interface level. Thus, a set of algorithms that are part of the method has been designed with privacy protectionin mind, which isdone byusing realistic dummy parameter creation. Todemonstrate the applicability of the method, arelevant context-aware data set has been used to run performance and usability tests. Findings - The proposed method has been experimentally evaluated using performance and usability evaluation tests and is shown that with a small decrease in terms of performance, user privacy can be protected. Originality/value - This is a novel research paper that proposed a method for protecting the privacy of mobile recommender systems users when context parameters are used

    A qualitative study of stakeholders' perspectives on the social network service environment

    Get PDF
    Over two billion people are using the Internet at present, assisted by the mediating activities of software agents which deal with the diversity and complexity of information. There are, however, ethical issues due to the monitoring-and-surveillance, data mining and autonomous nature of software agents. Considering the context, this study aims to comprehend stakeholders' perspectives on the social network service environment in order to identify the main considerations for the design of software agents in social network services in the near future. Twenty-one stakeholders, belonging to three key stakeholder groups, were recruited using a purposive sampling strategy for unstandardised semi-structured e-mail interviews. The interview data were analysed using a qualitative content analysis method. It was possible to identify three main considerations for the design of software agents in social network services, which were classified into the following categories: comprehensive understanding of users' perception of privacy, user type recognition algorithms for software agent development and existing software agents enhancement

    Federated Variational Autoencoder for Collaborative Filtering

    Get PDF

    PERSONALIZED POINT OF INTEREST RECOMMENDATIONS WITH PRIVACY-PRESERVING TECHNIQUES

    Get PDF
    Location-based services (LBS) have become increasingly popular, with millions of people using mobile devices to access information about nearby points of interest (POIs). Personalized POI recommender systems have been developed to assist users in discovering and navigating these POIs. However, these systems typically require large amounts of user data, including location history and preferences, to provide personalized recommendations. The collection and use of such data can pose significant privacy concerns. This dissertation proposes a privacy-preserving approach to POI recommendations that address these privacy concerns. The proposed approach uses clustering, tabular generative adversarial networks, and differential privacy to generate synthetic user data, allowing for personalized recommendations without revealing individual user data. Specifically, the approach clusters users based on their fuzzy locations, generates synthetic user data using a tabular generative adversarial network and perturbs user data with differential privacy before it is used for recommendation. The proposed approaches achieve well-balanced trade-offs between accuracy and privacy preservation and can be applied to different recommender systems. The approach is evaluated through extensive experiments on real-world POI datasets, demonstrating that it is effective in providing personalized recommendations while preserving user privacy. The results show that the proposed approach achieves comparable accuracy to traditional POI recommender systems that do not consider privacy while providing significant privacy guarantees for users. The research\u27s contribution is twofold: it compares different methods for synthesizing user data specifically for POI recommender systems and offers a general privacy-preserving framework for different recommender systems. The proposed approach provides a novel solution to the privacy concerns of POI recommender systems, contributes to the development of more trustworthy and user-friendly LBS applications, and can enhance the trust of users in these systems

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare
    corecore