86 research outputs found

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today β€œ3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    A Scalable Flash-Based Hardware Architecture for the Hierarchical Temporal Memory Spatial Pooler

    Get PDF
    Hierarchical temporal memory (HTM) is a biomimetic machine learning algorithm focused upon modeling the structural and algorithmic properties of the neocortex. It is comprised of two components, realizing pattern recognition of spatial and temporal data, respectively. HTM research has gained momentum in recent years, leading to both hardware and software exploration of its algorithmic formulation. Previous work on HTM has centered on addressing performance concerns; however, the memory-bound operation of HTM presents significant challenges to scalability. In this work, a scalable flash-based storage processor unit, Flash-HTM (FHTM), is presented along with a detailed analysis of its potential scalability. FHTM leverages SSD flash technology to implement the HTM cortical learning algorithm spatial pooler. The ability for FHTM to scale with increasing model complexity is addressed with respect to design footprint, memory organization, and power efficiency. Additionally, a mathematical model of the hardware is evaluated against the MNIST dataset, yielding 91.98% classification accuracy. A fully custom layout is developed to validate the design in a TSMC 180nm process. The area and power footprints of the spatial pooler are 30.538mm2 and 5.171mW, respectively. Storage processor units have the potential to be viable platforms to support implementations of HTM at scale
    • …
    corecore