280 research outputs found

    A Novel PMSM Hybrid Sensorless Control Strategy for EV Applications Based on PLL and HFI

    Get PDF
    In this paper, a novel hybrid sensorless control strategy for Permanent Magnet Synchronous Machine (PMSM) drives applied to Electric Vehicles (EV) is presented. This sensorless strategy covers the EV full speed range and also has speed reversal capability. It combines a High Frequency Injection (HFI) technique for low and zero speeds, and a Phase-Locked Loop (PLL) for the medium and high speed regions. A solution to achieve smooth transitions between the PLL and the HFI strategies is also proposed, allowing to correctly detect the rotor position polarity when HFI takes part. Wide speed and torque four-quadrant simulation results are provided, which validate the proposed sensorless strategy for being further implemented in EV.Peer ReviewedPostprint (author's final draft

    High-frequency issues using rotating voltage injections intended for position self-sensing

    Get PDF
    The rotor position is required in many control schemes in electrical drives. Replacing position sensors by machine self-sensing estimators increases reliability and reduces cost. Solutions based on tracking magnetic anisotropies through the monitoring of the incremental inductance variations are efficient at low-speed and standstill operations. This inductance can be estimated by measuring the response to the injection of high-frequency signals. In general however, the selection of the optimal frequency is not addressed thoroughly. In this paper, we propose discrete-time operations based on a rotating voltage injection at frequencies up to one third of the sampling frequency used by the digital controller. The impact on the rotation-drive, the computational requirement, the robustness and the effect of the resistance on the position estimation are analyzed regarding the signal frequency

    A review of saliency-based sensorless control methods for alternating current machines

    Get PDF
    Operation of model-based sensorless control of Alternating Current machines at low and zero speeds is unreliable and can fail. To overcome the limitations of sensorless control at low speeds, several alternative techniques have been developed to estimate speed and position. These are mainly based on detecting machine saliencies by measuring the response of the current to some form of voltage injection. This paper discusses injection methods, machine saliencies, and techniques used to extract speed and position that are applicable to both induction machines and permanent magnet synchronous motors.peer-reviewe

    FPGA-based implementation of the back-EMF symmetric-threshold-tracking sensorless commutation method for brushless DC-machines

    Get PDF
    The operation of brushless DC permanent-magnet machines requires information of the rotor position to steer the semiconductor switches of the power-supply module which is commonly referred to as Brushless Commutation. Different sensorless techniques have been proposed to estimate the rotor position using current and voltage measurements of the machine. Detection of the back-electromotive force (EMF) zero-crossing moments is one of the methods most used to achieve sensorless control by predicting the commutation moments. Most of the techniques based on this phenomenon have the inherit disadvantage of an indirect detection of commutation moments. This is the result of the commutation moment occurring 30 electrical degrees after the zero-crossing of the induced back-emf in the unexcited phase. Often, the time difference between the zero crossing of the back-emf and the optimal current commutation is assumed constant. This assumption can be valid for steady-state operation, however a varying time difference should be taken into account during transient operation of the BLDC machine. This uncertainty degrades the performance of the drive during transients. To overcome this problem which improves the performance while keeping the simplicity of the back-emf zero-crossing detection method an enhancement is proposed. The proposed sensorless method operates parameterless in a way it uses none of the brushless dc-machine parameters. In this paper different aspects of experimental implementation of the new method as well as various aspects of the FPGA programming are discussed. Proposed control method is implemented within a Xilinx Spartan 3E XC3S500E board

    Sensorless Control of Switched-Flux Permanent Magnet Machines

    Get PDF
    This thesis investigates the sensorless control strategies of permanent magnet synchronous machines (PMSMs), with particular reference to switched-flux permanent magnet (SFPM) machines, based on high-frequency signal injection methods for low speed and standstill and the back-EMF based methods for medium and high speeds

    Analysis and Application of the Direct Flux Control Sensorless Technique to Low-Power PMSMs

    Get PDF
    In the field of sensorless control of permanent magnet synchronous motors (PMSMs), different techniques based on machine anisotropies have been studied and implemented successfully. Nevertheless, most proposed approaches extract the rotor position information from the measured machine currents, that, when applied to low-power machines, might require high-bandwidth current sensors. An interesting alternative is given by sensorless techniques that exploit the star-point voltage of PMSMs, such as the direct flux control technique. This work aims at analyzing the conditions of applicability of such technique by considering a more thorough description of the machine inductance matrix. After a comprehensive mathematical description of the technique and characterization of the machine anisotropy information that is extracted from the star-point voltage, simulation as well as experimental results conducted on a test machine are presented and discussed in order to validate the proposed theory

    A Fast Estimation of Initial Rotor Position for Low-Speed Free-Running IPMSM

    Get PDF

    High frequency signal injection method for sensorless permanent magnet synchronous motor drives

    Get PDF
    The objective of this project is to design a high frequency signal injection method for sensorless control of permanent magnet synchronous motor (PMSM) drives. Generally, the PMSM drives control requires the appearance of speed and positon sensor to measure the motor speed hence to feedback the information for variable speed drives operation. The usage of the sensor will increase the size, cost, extra hardwire and feedback devices. Therefore, there is motivation to eliminate this type of sensor by injecting high frequency signal and utilizing the electrical parameter from the motor so that the speed and positon of rotor can be estimated. The proposed position and speed sensorless control method using high frequency signal injection together with all the power electronic circuit are modelled using Simulink. PMSM sensorless driveis simulated and the results are analyzed in terms of speed, torque and stator current response without load disturbance but under the specification of varying speed, forward to reverse operation, reverse to forward operation and step change in reference speed. The results show that the signal injection method performs well during start-up and low speed operation

    Hybrid sensorless control of PMSM in full speed range using HFI and back-EMF

    Get PDF
    The permanent magnet synchronous motors (PMSM) are more and more used because of their high performance compared with other AC motors. The present paper proposes a hybrid controller which consists of a high frequency injection estimator and a back-electromotive-force observer in full speed range for the sensorless control of PMSM. The aim objective of the study to prevent speed overshot in startup time of the motor and provides a better dynamic response in transient and permanent states using this structure. A hybrid algorithm is applied to realize a smooth transition from low to high speed. At standstill and very low speed region, HF injection technique is used to detect the rotor initial position. In this first step study, the position estimation is derived from a HF current injection by using only one filter. When the rotor speed goes up to a certain value where back-EMF can provide adequate information, a back-EMF observer will dominate. Thanks to this structure, the mechanical sensor can be engaged using the best estimates and the developed control method is fast, simple, and flexible. The effectiveness, superiority, and performance of the proposed control method and extensive simulation results are provided on a 1 kW permanent magnet synchronous motor drive, demonstrating the expected performances

    New Hybrid Sensorless Speed of a Non-Salient Pole PMSG Coupled to Wind turbine Using a Modified Switching Algorithm

    Get PDF
    ©2019 ISA. Published by Elsevier Ltd. All rights reserved. his manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/The paper focuses on the design of position and speed observers for the rotor of a non-salient pole permanent magnet synchronous generator (NSPPMSG) coupled to a wind turbine. With the random nature of wind speed this observer is required to provide a position and speed estimates over a wide speed range. The proposed hybrid structure combines two observers and a switching algorithm to select the appropriate observer based on a modified weighting coefficients method. The first observer is a higher-order sliding mode observer (HOSMO) based on modified super twisting algorithm (STA) with correction term and operates in the medium and nominal wind speed ranges. The second observer is used in the low speed range and is based on the rotor flux estimation and the control by injecting a direct reference current different to zero. The stability of each observer has been successfully assessed using an appropriate Lyapunov function. The simulation results obtained show the effectiveness and performance of the proposed observer and control scheme.Peer reviewe
    corecore