5,255 research outputs found

    Novel Broadcasting Algorithm of Recursive Networks

    Get PDF
    [[abstract]]The interconnection network considered in this paper is the complete WK-Recursive network that demonstrates many attractive properties, such as high degree of regularity, symmetry and efficient communication. Chen and Duh have proposed a distributed stack-base broadcasting algorithm for the complete WK-Recursive networks [Networks, 24 (1994) 303-317]. To perform this algorithm, a stack of O(log N) elements, where N is the number of nodes, to keep the labels of links is included in each message. Moreover, as a node receives the message, a series of O(log N) pop and push operations on the stack is required. In this paper, we present a novel broadcasting algorithm for the complete WKRecursive network, which is much simpler and requires only constant data included in each message and constant time to determine the neighbors to forward the message

    Non-recursive max* operator with reduced implementation complexity for turbo decoding

    Get PDF
    In this study, the authors deal with the problem of how to effectively approximate the max?? operator when having n > 2 input values, with the aim of reducing implementation complexity of conventional Log-MAP turbo decoders. They show that, contrary to previous approaches, it is not necessary to apply the max?? operator recursively over pairs of values. Instead, a simple, yet effective, solution for the max?? operator is revealed having the advantage of being in non-recursive form and thus, requiring less computational effort. Hardware synthesis results for practical turbo decoders have shown implementation savings for the proposed method against the most recent published efficient turbo decoding algorithms by providing near optimal bit error rate (BER) performance

    Intersystem soft handover for converged DVB-H and UMTS networks

    Get PDF
    Digital video broadcasting for handhelds (DVB-H) is the standard for broadcasting Internet Protocol (IP) data services to mobile portable devices. To provide interactive services for DVB-H, the Universal Mobile Telecommunications System (UMTS) can be used as a terrestrial interaction channel for the unidirectional DVB-H network. The converged DVB-H and UMTS network can be used to address the congestion problems due to the limited multimedia channel accesses of the UMTS network. In the converged network, intersystem soft handover between DVB-H and UMTS is needed for an optimum radio resource allocation, which reduces network operation cost while providing the required quality of service. This paper deals with the intersystem soft handover between DVB-H and UMTS in such a converged network. The converged network structure is presented. A novel soft handover scheme is proposed and evaluated. After considering the network operation cost, the performance tradeoff between the network quality of service and the network operation cost for the intersystem soft handover in the converged network is modeled using a stochastic tree and analyzed using a numerical simulation. The results show that the proposed algorithm is feasible and has the potential to be used for implementation in the real environment

    Satellite Broadcasting Enabled Blockchain Protocol: A Preliminary Study

    Full text link
    Low throughput has been the biggest obstacle of large-scale blockchain applications. During the past few years, researchers have proposed various schemes to improve the systems' throughput. However, due to the inherent inefficiency and defects of the Internet, especially in data broadcasting tasks, these efforts all rendered unsatisfactory. In this paper, we propose a novel blockchain protocol which utilizes the satellite broadcasting network instead of the traditional Internet for data broadcasting and consensus tasks. An automatic resumption mechanism is also proposed to solve the unique communication problems of satellite broadcasting. Simulation results show that the proposed algorithm has a lower communication cost and can greatly improve the throughput of the blockchain system. Theoretical estimation of a satellite broadcasting enabled blockchain system's throughput is 6,000,000 TPS with a 20 gbps satellite bandwidth.Comment: Accepted by 2020 Information Communication Technologies Conference (ICTC 2020

    CCL: a portable and tunable collective communication library for scalable parallel computers

    Get PDF
    A collective communication library for parallel computers includes frequently used operations such as broadcast, reduce, scatter, gather, concatenate, synchronize, and shift. Such a library provides users with a convenient programming interface, efficient communication operations, and the advantage of portability. A library of this nature, the Collective Communication Library (CCL), intended for the line of scalable parallel computer products by IBM, has been designed. CCL is part of the parallel application programming interface of the recently announced IBM 9076 Scalable POWERparallel System 1 (SP1). In this paper, we examine several issues related to the functionality, correctness, and performance of a portable collective communication library while focusing on three novel aspects in the design and implementation of CCL: 1) the introduction of process groups, 2) the definition of semantics that ensures correctness, and 3) the design of new and tunable algorithms based on a realistic point-to-point communication model

    Distributed computing system with dual independent communications paths between computers and employing split tokens

    Get PDF
    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided

    Perfect tag identification protocol in RFID networks

    Full text link
    Radio Frequency IDentification (RFID) systems are becoming more and more popular in the field of ubiquitous computing, in particular for objects identification. An RFID system is composed by one or more readers and a number of tags. One of the main issues in an RFID network is the fast and reliable identification of all tags in the reader range. The reader issues some queries, and tags properly answer. Then, the reader must identify the tags from such answers. This is crucial for most applications. Since the transmission medium is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or limit the number of tags transmission collisions. We propose a protocol which, under some assumptions about transmission techniques, always achieves a 100% perfomance. It is based on a proper recursive splitting of the concurrent tags sets, until all tags have been identified. The other approaches present in literature have performances of about 42% in the average at most. The counterpart is a more sophisticated hardware to be deployed in the manufacture of low cost tags.Comment: 12 pages, 1 figur
    corecore