1,834 research outputs found

    Low-Cost On-Chip Clock Jitter Measurement Scheme

    Get PDF
    In this paper, we present a low-cost, on-chip clock jitter digital measurement scheme for high performance microprocessors. It enables in situ jitter measurement during the test or debug phase. It provides very high measurement resolution and accuracy, despite the possible presence of power supply noise (representing a major source of clock jitter), at low area and power costs. The achieved resolution is scalable with technology node and can in principle be increased as much as desired, at low additional costs in terms of area overhead and power consumption. We show that, for the case of high performance microprocessors employing ring oscillators (ROs) to measure process parameter variations (PPVs), our jitter measurement scheme can be implemented by reusing part of such ROs, thus allowing to measure clock jitter with a very limited cost increase compared with PPV measurement only, and with no impact on parameter variation measurement resolution

    Online error detection through trace infrastructure in ARM microprocessors

    Get PDF
    This paper presents a solution for error detection in ARM microprocessors based on the use of the trace infrastructure. This approach uses the Program and Instrumentation Trace Macrocells that are part of ARM's CoreSight architecture to detect control-flow and data-flow errors, respectively. The proposed approach has been tested with low-energy protons. Experimental results demonstrate high accuracy with up to 95% of observed errors detected in a commercial microprocessor with no hardware modification. In addition, it is shown how the proposed approach can be useful for further analysis and diagnosis of the cause of errors

    Evolution of Test Programs Exploiting a FSM Processor Model

    Get PDF
    Microprocessor testing is becoming a challenging task, due to the increasing complexity of modern architectures. Nowadays, most architectures are tackled with a combination of scan chains and Software-Based Self-Test (SBST) methodologies. Among SBST techniques, evolutionary feedback-based ones prove effective in microprocessor testing: their main disadvantage, however, is the considerable time required to generate suitable test programs. A novel evolutionary-based approach, able to appreciably reduce the generation time, is presented. The proposed method exploits a high-level representation of the architecture under test and a dynamically built Finite State Machine (FSM) model to assess fault coverage without resorting to time-expensive simulations on low-level models. Experimental results, performed on an OpenRISC processor, show that the resulting test obtains a nearly complete fault coverage against the targeted fault mode

    A Hybrid Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End SRAM FPGA

    Get PDF
    In this work we implemented a hybrid fault-tolerant LEON3 soft-core processor in a low-end FPGA (Artix-7) and evaluated its error detection capabilities through neutron irradiation and fault injection in an incremental manner. The error mitigation approach combines the use of SEC/DED codes for memories, a hardware monitor to detect control-flow errors, software-based techniques to detect data errors and configuration memory scrubbing with repair to avoid error accumulation. The proposed solution can significantly improve fault tolerance and can be fully embedded in a low-end FPGA, with reduced overhead and low intrusiveness

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo
    • 

    corecore