2,029 research outputs found

    Sorting receptor SORLA: cellular mechanisms and implications for disease

    Get PDF
    Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer's disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases

    A proteo-liposome system for the analysis of the intracellular interactome of membrane proteins using amyloid precursor protein as a model

    Get PDF
    Transmembrane proteins play crucial roles in many important physiological processes. The intracellular domain of membrane proteins is key for their function by interacting with a wide variety of cytosolic proteins. It is therefore important to examine this interaction. A recently developed method to study these interactions, based on the use of liposomes as a model membrane, involves the covalent coupling of the cytoplasmic domains of membrane proteins to the liposome membrane. This allows for the analysis of interaction partners requiring both protein and membrane lipid binding. This thesis further establishes the liposome recruitment system and utilises it to examine the intracellular interactome of the amyloid precursor protein (APP), most well-known for its proteolytic cleavage that results in the production and accumulation of amyloid beta fragments, the main constituent of amyloid plaques in Alzheimer’s disease pathology. Despite this, the physiological function of APP remains largely unclear. Through the use of the proteo-liposome recruitment system two novel interactions of APP’s intracellular domain (AICD) are examined with a view to gaining a greater insight into APP’s physiological function. One of these novel interactions is between AICD and the mTOR complex, a serine/threonine protein kinase that integrates signals from nutrients and growth factors. The kinase domain of mTOR directly binds to AICD and the N-terminal amino acids of AICD are crucial for this interaction. The second novel interaction is between AICD and the endosomal PIKfyve complex, a lipid kinase involved in the production of phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol-3-phosphate, which has a role in controlling ensdosome dynamics. The scaffold protein Vac14 of the PIKfyve complex binds directly to AICD and the C-terminus of AICD is important for its interaction with the PIKfyve complex. Using a recently developed intracellular PI(3,5)P2 probe it is shown that APP controls the formation of PI(3,5)P2 positive vesicular structures and that the PIKfyve complex is involved in the trafficking and degradation of APP. Both of these novel APP interactors have important implications of both APP function and Alzheimer’s disease. The proteo-liposome recruitment method is further validated through its use to examine the recruitment and assembly of the AP-2/clathrin coat from purified components to two membrane proteins containing different sorting motifs. Taken together this thesis highlights the proteo-liposome recruitment system as a valuable tool for the study of membrane proteins intracellular interactome. It allows for the mimicking of the protein in its native configuration therefore identifying weaker interactions that are not detected by more conventional methods and also detecting interactions that are mediated by membrane phospholipids

    Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    Get PDF
    Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration

    Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) represents one of the most dramatic threats to healthy aging and devising effective treatments for this devastating condition remains a major challenge in biomedical research. Much has been learned about the molecular concepts that govern proteolytic processing of the amyloid precursor protein to amyloid-{beta} peptides (A{beta}), and how accelerated accumulation of neurotoxic A{beta} peptides underlies neuronal cell death in rare familial but also common sporadic forms of this disease. Out of a plethora of proposed modulators of amyloidogenic processing, one protein emerged as a key factor in AD pathology, a neuronal sorting receptor termed SORLA. Independent approaches using human genetics, clinical pathology, or exploratory studies in animal models all converge on this receptor that is now considered a central player in AD-related processes by many. This review will provide a comprehensive overview of the evidence implicating SORLA-mediated protein sorting in neurodegenerative processes, and how receptor gene variants in the human population impair functional receptor expression in sporadic but possibly also in autosomal-dominant forms of AD

    Intracellular Trafficking Governs the Processing of the Amyloid Precursor Protein and the Secretion of Beta-Amyloid

    Get PDF
    One of the hallmarks of Alzheimer’s disease (AD) is the pathological accumulation of β-amyloid (Aβ) in the brains of AD patients. Oligomeric and fibrillar aggregates of Aβ have been shown to be neurotoxic to neurons and hippocampal slices. Therefore, limiting Aβ production is an important area of research in order to delay or stop AD progression. Aβ is produced by amyloidogenic cleavage of amyloid precursor protein (APP). Amyloidogenic cleavage requires ectodomain removal by β-secretase and intramembrane γ-cleavage by γ-secretase to release Aβ products ranging from 38-43 residues. Work from our lab has shown that APP and γ-secretase are resident proteins of the lysosome. Furthermore, the acidic environment of lysosomes that promotes the aggregation of Aβ. While many lines of evidence demonstrate that APP internalization is important to the Aβ production, the intracellular itinerary of APP, from production to cleavage, is unclear. In order to follow the intracellular trafficking of APP and Aβ, we have applied various microscopy techniques, in combination with fluorescently-tagged proteins. Using a photoactivatable mutant of GFP (paGFP), we accurately photoactivated nascent APP and followed its trafficking to lysosomes. To our surprise, we found that APP was delivered to lysosomes, where it is cleaved by γ-secretase, through an entirely intracellular pathway. This intracellular pathway was dependent upon an interaction between APP and adaptor protein 3. We found that the interaction between APP and AP-3 is dependent on the 709YTSI712 tyrosine motif. Furthermore, phosphorylation of the serine within this motif, by PKCε, can disrupt this interaction. By decreasing APP trafficking to lysosomes, through disrupting the APP/AP-3 interaction we decreased the production of Aβ. While lysosomes have traditionally been thought to be responsible for cellular waste disposal, they also have a secretory role in a number of cell types; including neurons. We demonstrate that lysosomes are not only responsible for the production of Aβ, but may also be responsible for the secretion of lysosomal Aβ into the extracellular space. This research may provide new therapeutic targets to limit the production and release of Aβ

    The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known.</p> <p>Results</p> <p>Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues.</p> <p>Conclusion</p> <p>Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.</p

    Ectodomain shedding of the amyloid precursor protein: Cellular control mechanisms and novel modifiers

    Get PDF
    Proteolytic cleavage in the ectodomain of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer's disease amyloid-beta (A beta) pepticle and occurs through two different protease activities termed alpha- and beta-secretase. Both proteases compete for APP cleavage, but have opposite effects on A beta generation. At present, little is known about the cellular pathways that control APP alpha- or beta-secretase cleavage and thus A beta generation. To explore the contributory pathways in more detail we have recently employed an expression cloning screen and identified several activators of APP cleavage by alpha- or beta-secretase. Among them were known activators of APP cleavage, for example protein kinase A, and novel activators, such as endophilin and the APP homolog amyloid precursor-like protein 1 (APLP1). Mechanistic analysis revealed that both endophilin and APLP1 reduce the rate of APP endocytosis and strongly increase APP cleavage by alpha-secretase. This review summarizes the results of the expression cloning screen in the context of recent developments in our understanding of the cellular regulation of APP alpha-secretase cleavage. Moreover, it highlights the particular importance of endocytic APP trafficking as a prime modulator of APP shedding. Copyright (c) 2006 S. Karger AG, Basel

    Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein

    Get PDF
    Mint1/X11α is one of four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate Aβ peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2 binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. This article is protected by copyright. All rights reserved

    Protein sorting from endosomes to the TGN

    Get PDF
    Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally
    corecore